A problem with our old behavior becomes observable under x86-64 COFF
when we need a read-only GV which has an initializer which is referenced
using a relocation: we would mark the section as writable. Marking the
section as writable interferes with section merging.
This fixes PR21009.
llvm-svn: 218179
tricky case of single-element insertion into the zero lane of a zero
vector.
We can't just use the same pattern here as we do in every other vector
type because the general insertion logic can handle insertion into the
non-zero lane of the vector. However, in SSE4.1 with v4f32 vectors we
have INSERTPS that is a much better choice than the generic one for such
lowerings. But INSERTPS can do lots of other lowerings as well so
factoring its logic into the general insertion logic doesn't work very
well. We also can't just extract the core common part of the general
insertion logic that is faster (forming VZEXT_MOVL synthetic nodes that
lower to MOVSS when they can) because VZEXT_MOVL is often *faster* than
a blend while INSERTPS is slower! So instead we do a restrictive
condition on attempting to use the generic insertion logic to narrow it
to those cases where VZEXT_MOVL won't need a shuffle afterward and thus
will do better than INSERTPS. Then we try blending. Then we go back to
INSERTPS.
This still doesn't generate perfect code for some silly reasons that can
be fixed by tweaking the td files for lowering VZEXT_MOVL to use
XORPS+BLENDPS when available rather than XORPS+MOVSS when the input ends
up in a register rather than a load from memory -- BLENDPSrr has twice
the reciprocal throughput of MOVSSrr. Don't you love this ISA?
llvm-svn: 218177
floating point types and use it for both v2f64 and v2i64 single-element
insertion lowering.
This fixes the last non-AVX performance regression test case I've gotten
of for the new vector shuffle lowering. There is obvious analogous
lowering for v4f32 that I'll add in a follow-up patch (because with
INSERTPS, v4f32 requires special treatment). After that, its AVX stuff.
llvm-svn: 218175
When looking through sign/zero-extensions the code would always assume there is
such an extension instruction and use the wrong operand for the address.
There was also a minor issue in the handling of 'AND' instructions. I
accidentially used a 'cast' instead of a 'dyn_cast'.
llvm-svn: 218161
lowering to support both anyext and zext and to custom lower for many
different microarchitectures.
Using this allows us to get *exactly* the right code for zext and anyext
shuffles in all the vector sizes. For v16i8, the improvement is *huge*.
The new SSE2 test case added I refused to add before this because it was
sooooo muny instructions.
llvm-svn: 218143
To reduce the size of -gmlt data, skip the subprograms without any
inlined subroutines. Since we've now got the ability to make these
determinations in the backend (funnily enough - we added the flag so we
wouldn't produce ranges under -gmlt, but with this change we use the
flag, but go back to producing ranges under -gmlt).
Instead, just produce CU ranges to inform the consumer which parts of
the code are described by this CU's line table. Tools could inspect the
line table directly to compute the range, but the CU ranges only seem to
be about 0.5% of object/executable size, so I'm not too worried about
teaching llvm-symbolizer that trick just yet - it's certainly a possible
piece of future work.
Update an llvm-symbolizer test just to demonstrate that this schema is
acceptable there (if it wasn't, the compiler-rt tests would catch this,
but good to have an in-llvm-tree test for llvm-symbolizer's behavior
here)
Building the clang binary with -gmlt with this patch reduces the total
size of object files by 5.1% (5.56% without ranges) without compression
and the executable by 4.37% (4.75% without ranges).
llvm-svn: 218129
The heuristic used by DAGCombine to form FMAs checks that the FMUL has only one
use, but this is overly-conservative on some systems. Specifically, if the FMA
and the FADD have the same latency (and the FMA does not compete for resources
with the FMUL any more than the FADD does), there is no need for the
restriction, and furthermore, forming the FMA leaving the FMUL can still allow
for higher overall throughput and decreased critical-path length.
Here we add a new TLI callback, enableAggressiveFMAFusion, false by default, to
elide the hasOneUse check. This is enabled for PowerPC by default, as most
PowerPC systems will benefit.
Patch by Olivier Sallenave, thanks!
llvm-svn: 218120
to undef lanes as well as defined widenable lanes. This dramatically
improves the lowering we use for undef-shuffles in a zext-ish pattern
for SSE2.
llvm-svn: 218115
Not sure why I only did SSSE3 here. Also, I've left out some of the SSE2
ones because the shuffles are so absurd it's not worth transcribing
them. Will try to fix them to be sane and then check them.
llvm-svn: 218114
shuffles that are zext-ing.
Not a lot to see here; the undef lane variant is better handled with
pshufd, but this improves the actual zext pattern.
llvm-svn: 218112
to the new vector shuffle lowering code.
This allows us to emit PMOVZX variants consistently for patterns where
it is a viable lowering. This instruction is both fast and allows us to
fold loads into it. This only hooks the new lowering up for i16 and i8
element widths, mostly so I could manage the change to the tests. I'll
add the i32 one next, although it is significantly less interesting.
One thing to note is that we already had some tests for these patterns
but those tests had far less horrible instructions. The problem is that
those tests weren't checking the strict start and end of the instruction
sequence. =[ As a consequence something changed in the lowering making
us generate *TERRIBLE* code for these patterns in SSE2 through SSSE3.
I've consolidated all of the tests and spelled out the madness that we
currently emit for these shuffles. I'm going to try to figure out what
has gone wrong here.
llvm-svn: 218102
With this optimization, we will not always insert zext for values crossing
basic blocks, but insert sext if the users of a value crossing basic block
has preference of sign predicate.
llvm-svn: 218101
This omission will be done in a fancier manner once we're dealing with
"put gmlt in the skeleton CUs under fission" - it'll have to be
conditional on the kind of CU we're emitting into (skeleton or gmlt).
llvm-svn: 218098
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
llvm-svn: 218078
The fix is slightly different then x86 (see r216117) because the number of values
attached to a return can vary even for a single returned value (e.g., f64 yields
two returned values).
<rdar://problem/18352998>
llvm-svn: 218076
Summary:
This patch was originally in D5304 (I could not find a way to reopen that revision).
It was accepted, commited and broke the build bots because the overloading of
the constructor of ArrayRef for braced initializer lists is not supported by all
toolchains. I then reverted it, and propose this fixed version that uses a plain
C array instead in makeDMB (that array is then converted implicitly to an
ArrayRef, but that is not behind an ifdef). Could someone confirm me whether
initialization lists for plain C arrays are supported by every toolchain used
to build llvm ? Otherwise I can just initialize the array in the old way:
args[0] = ...; .. ; args[5] = ...;
Below is the description of the original patch:
```
I had only tested this code for ARMv7 and ARMv8. This patch adds several
fallback paths if the processor does not support dmb ish:
- dmb sy if a cortex-M with support for dmb
- mcr p15, #0, r0, c7, c10, #5 for ARMv6 (special instruction equivalent to a DMB)
These fallback paths were chosen based on the code for fence seq_cst.
Thanks to luqmana for having noticed this bug.
```
Test Plan: Added more cases to atomic-load-store.ll + make check-all
Reviewers: jfb, t.p.northover, luqmana
Subscribers: llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D5386
llvm-svn: 218066
There is no purpose in using it for single-input shuffles as
pshufd is just as fast and doesn't tie the two operands. This removes
a substantial amount of wrong-domain blend operations in SSSE3 mode. It
also completes the usage of PALIGNR for integer shuffles and addresses
one of the test cases Quentin hit with the new vector shuffle lowering.
There is still the question of whether and when to use this for floating
point shuffles. It is faster than shufps or shufpd but in the integer
domain. I don't yet really have a good heuristic here for when to use
this instruction for floating point vectors.
llvm-svn: 218038
When folding the intrinsic flag into the branch or select we also have to
consider the fact if the intrinsic got simplified, because it changes the
flag we have to check for.
llvm-svn: 218034
Small optimization in 'simplifyAddress'. When the offset cannot be encoded in
the load/store instruction, then we need to materialize the address manually.
The add instruction can encode a wider range of immediates than the load/store
instructions. This change tries to fold the offset into the add instruction
first before materializing the offset in a register.
llvm-svn: 218031
The 'AND' instruction could be used to mask out the lower 32 bits of a register.
If this is done inside an address computation we might be able to fold the
instruction into the memory instruction itself.
and x1, x1, #0xffffffff ---> ldrb x0, [x0, w1, uxtw]
ldrb x0, [x0, x1]
llvm-svn: 218030
Certain directives are unsupported on Windows (some of which could/should be
supported). We would not diagnose the use but rather crash during the emission
as we try to access the Target Streamer. Add an assertion to prevent creating a
NULL reference (which is not permitted under C++) as well as a test to ensure
that we can diagnose the disabled directives.
llvm-svn: 218014
PALIGNR. This just adds it to the v8i16 and v16i8 lowering steps where
it is completely unmatched. It also introduces the logic for detecting
rotation shuffle masks even in the presence of single input or blend
masks and arbitrarily undef lanes.
I've added fairly comprehensive tests for the matching logic in v8i16
because the tests at that size are much easier to write and manage.
I've not checked the SSE2 code generated for these tests because the
code is *horrible*. It is absolute madness. Testing it will just make
the test brittle without giving any interesting improvements in the
correctness confidence.
llvm-svn: 218013
Rather than relying on support for a specific directive to determine if we are
targeting MachO, explicitly check the output format.
As an additional bonus, cleanup the caret diagnostic for the non-MachO case and
avoid the spurious error caused by not discarding the statement.
llvm-svn: 218012
For PPC targets, FastISel does not take the sign extension information into account when selecting return instructions whose operands are constants. A consequence of this is that the return of boolean values is not correct. This patch fixes the problem by evaluating the sign extension information also for constants, forwarding this information to PPCMaterializeInt which takes this information to drive the sign extension during the materialization.
llvm-svn: 217993