Lower F08 shift (shiftl, shiftr, shifta) and combined shift (dshiftl, dshiftr)
intrinsics. The combined shift intrinsics are implemented using the
definitions of shiftl and shiftr as described by the standard.
For non-conformant arguments to the shift intrinsics, the implementation tries
to replicate the behavior of other compilers if most of the other behave
consistently.
Differential Revision: https://reviews.llvm.org/D129316
Lower F08 bit population count intrinsics popcnt, poppar, leadz and trailz. popcnt, leadz and trailz are implemented using the corresponding MLIR math intrinsics. poppar is implemented in terms of popcnt.
Differential Revision: https://reviews.llvm.org/D129584
If a function is non-recursive we only performed intra-procedural
reasoning for reachability (via AA::isPotentiallyReachable). However,
if it is re-entrant that doesn't mean we can't reach. Instead of this
problematic logic in the reachability reasoning we utilize logic in
AAPointerInfo. If a location is for sure written by a function it can
be re-entrant or recursive we know only intra-procedural reasoning is
sufficient.
The existing code doesn't expect dummy values (undef, poison, null-derived
constants etc) as arguments of these intrinsics. However, they can be there
in unreached code. Currently we fail trying to find base for them.
Handle these cases separately. Return null as base for them to be consistent
with the handling in the main algorithm in findBaseDefiningValue.
Differential Revision: https://reviews.llvm.org/D129561
Reviewed By: apilipenko
Add affine.if canonicalization to compose affine.apply ops into its set
and operands. This eliminates affine.apply ops feeding into affine.if
ops.
Differential Revision: https://reviews.llvm.org/D130242
If we have a dominating must-write access we do not need to know the
initial value of some object to perform reasoning about the potential
values. The dominating must-write has overwritten the initial value.
lowerGlobalAddress added by D128427 can be used for PIC. The actual condition is
that the global value needs to be dso_local (a dso_preemptable one needs GOT
indirection).
load-store.ll has UB due to out-of-bounds load/store. Fix the UB in the variable
test and add an array test. Note: NOPIC array index is currently wrong.
Reviewed By: wangleiat
Differential Revision: https://reviews.llvm.org/D129977
Diagnostic for `-Wauto-import` shouldn't be a warning because it doesn't
represent a potential problem in code that should be fixed. And the
emitted fix-it is likely to trigger `-Watimport-in-framework-header`
which makes it challenging to have a warning-free codebase. But it is
still useful to see how include directives are translated into modular
imports and which module a header belongs to, that's why keep it as a remark.
Keep `-Wauto-import` for now to allow a gradual migration for codebases
using `-Wno-auto-import`, e.g., `-Weverything -Wno-auto-import`.
rdar://79594287
Differential Revision: https://reviews.llvm.org/D130138
Using invalidated vector iterator is at best a UB and could crash depending on STL implementation.
Fixing via minimal changes to preserve the existing code style.
Coverity warning 1454828 (scan.coverity.com)
Differential Revision: https://reviews.llvm.org/D130312
Correct the logic used to set `ATOMIC_*_LOCK_FREE` preprocessor macros not
to rely on the ABI alignment of types. Instead, just assume all those
types are aligned correctly by default since clang uses safe alignment
for `_Atomic` types even if the underlying types are aligned to a lower
boundary by default.
For example, the `long long` and `double` types on x86 are aligned to
32-bit boundary by default. However, `_Atomic long long` and `_Atomic
double` are aligned to 64-bit boundary, therefore satisfying
the requirements of lock-free atomic operations.
This fixes PR #19355 by correcting the value of
`__GCC_ATOMIC_LLONG_LOCK_FREE` on x86, and therefore also fixing
the assumption made in libc++ tests. This also fixes PR #30581 by
applying a consistent logic between the functions used to implement
both interfaces.
Reviewed By: hfinkel, efriedma
Differential Revision: https://reviews.llvm.org/D28213
The default host CPU for an i386 triple is typically at least an i586,
which has cmpxchg8b (Clang feature, "cx8"). Therefore,
`__CLANG_ATOMIC_LLONG_LOCK_FREE` is 2 on the host, but the value should
be 1 for the device.
Also, grep for `__CLANG_ATOMIC_*` instead of `__GCC_ATOMIC_*`. The CLANG
macros are always emitted, but the GCC macros are omitted for the
*-windows-msvc targets. The `__GCC_HAVE_SYNC_COMPARE_AND_SWAP` macro
always has GCC in its name, not CLANG, however.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D127465
The patch adds SPIRVPrepareFunctions pass, which modifies function
signatures containing aggregate arguments and/or return values before
IR translation. Information about the original signatures is stored in
metadata. It is used during call lowering to restore correct SPIR-V types
of function arguments and return values. This pass also substitutes some
llvm intrinsic calls to function calls, generating the necessary functions
in the module, as the SPIRV translator does.
The patch also includes changes in other modules, fixing errors and
enabling many SPIR-V features that were omitted earlier. And 15 LIT tests
are also added to demonstrate the new functionality.
Differential Revision: https://reviews.llvm.org/D129730
Co-authored-by: Aleksandr Bezzubikov <zuban32s@gmail.com>
Co-authored-by: Michal Paszkowski <michal.paszkowski@outlook.com>
Co-authored-by: Andrey Tretyakov <andrey1.tretyakov@intel.com>
Co-authored-by: Konrad Trifunovic <konrad.trifunovic@intel.com>
This code confuses LV's "Uniform" and LVL/LAI's "Uniform". Despite the
common name, these are different.
* LVs notion means that only the first lane *of each unrolled part* is
required. That is, lanes within a single unroll factor are considered
uniform. This allows e.g. widenable memory ops to be considered
uses of uniform computations.
* LVL and LAI's notion refers to all lanes across all unrollings.
IsUniformMem is in turn defined in terms of LAI's notion. Thus a
UniformMemOpmeans is a memory operation with a loop invariant address.
This means the same address is accessed in every iteration.
The tweaked piece of code was trying to match a uniform mem op (i.e.
fully loop invariant address), but instead checked for LV's notion of
uniformity. In theory, this meant with UF > 1, we could speculate
a load which wasn't safe to execute.
This ends up being mostly silent in current code as it is nearly
impossible to create the case where this difference is visible. The
closest I've come in the test case from 54cb87, but even then, the
incorrect result is only visible in the vplan debug output; before this
change we sink the unsafely speculated load back into the user's predicate
blocks before emitting IR. Both before and after IR are correct so the
differences aren't "interesting".
The other test changes are uninteresting. They're cases where LV's uniform
analysis is slightly weaker than SCEV isLoopInvariant.
We can always fold zext.b since it is just andi. The others require
Zba/Zbb.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D130302
Summary:
Some of the buildbots don't find the libraries because they don't build
for the GPU. Although it should always be there it's unclear why these
buildbots are having problemsd. LTO is only interesting on the GPU and
these tests take extra time anyway so I'm just going to disable them for
now.
Adds a number of utilities that are used to help create and update
memprof related metadata. These will be used during profile matching
and annotation, as well as by the inliner when updating the metadata.
Also adds unit tests for the utilities.
See also related RFCs:
RFC: Sanitizer-based Heap Profiler [1]
RFC: A binary serialization format for MemProf [2]
RFC: IR metadata format for MemProf [3]
(Note that the IR metadata format has changed from the RFC during
implementation, as described in the preceeding patch adding the basic
metadata and verification support.)
Depends on D128141.
Differential Revision: https://reviews.llvm.org/D128854
After this, NUMERIC_CONSTANT and strings should parse only one way.
There are 8 types of literals, and 24 valid (literal, TokenKind) pairs.
This means adding 8 new named guards (or 24, if we want to assert the token).
It seems fairly clear to me at this point that the guard names are unneccesary
indirection: the guards are in fact coupled to the rule signature.
(Also add the zero guard I forgot in the previous patch.)
Differential Revision: https://reviews.llvm.org/D130066
message expressions
For an Obj-C message expression `[o m]`, the adding matcher will match
the declaration of the method `m`. This commit overloads the existing
`callee` ASTMatcher, which originally was only for C/C++ nodes but
also applies to Obj-C messages now.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D129398
Printf's integer converter has been modified to use the new converter. In
future, it will be used to implement other parts of the libc.
Reviewed By: michaelrj
Differential Revision: https://reviews.llvm.org/D130227
If we build the Target libraries with -fvisibility=hidden, then
LLVM_EXTERNAL_VISIBILITY must also be able to override it back
to default visibility.
Currently, the LLVM_EXTERNAL_VISIBILITY define is a no-op for
mingw targets, thus set CMAKE_CXX_VISIBILITY_PRESET correspondingly.
This unbreaks the mingw dylib build, if the compiler actually
takes hidden visiblity into account (e.g. after D130121).
(Later, once hidden visiblity can be used for MinGW targets, we
can make LLVM_EXTERNAL_VISIBILITY and LLVM_LIBRARY_VISIBILITY expand
to actual attributes, and reverse this commit.)
Differential Revision: https://reviews.llvm.org/D130200
Missed previously and needed to flip the default. Most of these just
flipped to _Raw to retain existing state/keep this small except for TOSA
dialect which got flipped to _Both as no further change was needed..
This probably should have been part of D123089, but the effects of it
don't show up until we start removing functions from the table in
D130107. Oops.
Differential Revision: https://reviews.llvm.org/D130184
This allows us to accept annotations from out-of-tree languages (the
example test is derived from Rust) so they can enjoy the benefits of
LLVM's optimizations without requiring LLVM to have language-specific
knowledge.
Differential Revision: https://reviews.llvm.org/D123091