This adds -no-opaque-pointers to clang tests whose output will
change when opaque pointers are enabled by default. This is
intended to be part of the migration approach described in
https://discourse.llvm.org/t/enabling-opaque-pointers-by-default/61322/9.
The patch has been produced by replacing %clang_cc1 with
%clang_cc1 -no-opaque-pointers for tests that fail with opaque
pointers enabled. Worth noting that this doesn't cover all tests,
there's a remaining ~40 tests not using %clang_cc1 that will need
a followup change.
Differential Revision: https://reviews.llvm.org/D123115
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
[Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default (2)
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
Resolve lit failures in clang after 8ca4b3e's land
Fix lit test failures in clang-ppc* and clang-x64-windows-msvc
Fix missing failures in clang-ppc64be* and retry fixing clang-x64-windows-msvc
Fix internal_clone(aarch64) inline assembly
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
Now in libcxx and clang, all the coroutine components are defined in
std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace. So the existing codes wouldn't be break after update
compiler.
And in case the compiler found std::coroutine_traits and
std::experimental::coroutine_traits at the same time, it would emit an
error for it.
The support for looking up std::experimental::coroutine_traits would be
removed in Clang16.
Reviewed By: lxfind, Quuxplusone
Differential Revision: https://reviews.llvm.org/D108696
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
This reverts commit 2fbd254aa4, which broke the libc++ CI. I'm reverting
to get things stable again until we've figured out a way forward.
Differential Revision: https://reviews.llvm.org/D108696
Summary: Now in libcxx and clang, all the coroutine components are
defined in std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
But move the coroutine component into the std namespace may be an break
change. So I planned to split this change into two patch. One in clang
and other in libcxx.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace and emit a warning in this case. So the existing codes
wouldn't be break after update compiler.
Test Plan: check-clang, check-libcxx
Reviewed By: lxfind
Differential Revision: https://reviews.llvm.org/D108696
tl;dr Correct implementation of Corouintes requires having lifetime intrinsics available.
Coroutine functions are functions that can be suspended and resumed latter. To do so, data that need to stay alive after suspension must be put on the heap (i.e. the coroutine frame).
The optimizer is responsible for analyzing each AllocaInst and figure out whether it should be put on the stack or the frame.
In most cases, for data that we are unable to accurately analyze lifetime, we can just conservatively put them on the heap.
Unfortunately, there exists a few cases where certain data MUST be put on the stack, not on the heap. Without lifetime intrinsics, we are unable to correctly analyze those data's lifetime.
To dig into more details, there exists cases where at certain code points, the current coroutine frame may have already been destroyed. Hence no frame access would be allowed beyond that point.
The following is a common code pattern called "Symmetric Transfer" in coroutine:
```
auto tmp = await_suspend();
__builtin_coro_resume(tmp.address());
return;
```
In the above code example, `await_suspend()` returns a new coroutine handle, which we will obtain the address and then resume that coroutine. This essentially "transfered" from the current coroutine to a different coroutine.
During the call to `await_suspend()`, the current coroutine may be destroyed, which should be fine because we are not accessing any data afterwards.
However when LLVM is emitting IR for the above code, it needs to emit an AllocaInst for `tmp`. It will then call the `address` function on tmp. `address` function is a member function of coroutine, and there is no way for the LLVM optimizer to know that it does not capture the `tmp` pointer. So when the optimizer looks at it, it has to conservatively assume that `tmp` may escape and hence put it on the heap. Furthermore, in some cases `address` call would be inlined, which will generate a bunch of store/load instructions that move the `tmp` pointer around. Those stores will also make the compiler to think that `tmp` might escape.
To summarize, it's really difficult for the mid-end to figure out that the `tmp` data is short-lived.
I made some attempt in D98638, but it appears to be way too complex and is basically doing the same thing as inserting lifetime intrinsics in coroutines.
Also, for reference, we already force emitting lifetime intrinsics in O0 for AlwaysInliner: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Passes/PassBuilder.cpp#L1893
Differential Revision: https://reviews.llvm.org/D99227
For a default visibility external linkage definition, dso_local is set for ELF
-fno-pic/-fpie and COFF and Mach-O. Since default clang -cc1 for ELF is similar
to -fpic ("PIC Level" is not set), this nuance causes unneeded binary format differences.
To make emitted IR similar, ELF -cc1 -fpic will default to -fno-semantic-interposition,
which sets dso_local for default visibility external linkage definitions.
To make this flip smooth and enable future (dso_local as definition default),
this patch replaces (function) `define ` with `define{{.*}} `,
(variable/constant/alias) `= ` with `={{.*}} `, or inserts appropriate `{{.*}} `.
arguments.
* Adds 'nonnull' and 'dereferenceable(N)' to 'this' pointer arguments
* Gates 'nonnull' on -f(no-)delete-null-pointer-checks
* Introduces this-nonnull.cpp and microsoft-abi-this-nullable.cpp tests to
explicitly test the behavior of this change
* Refactors hundreds of over-constrained clang tests to permit these
attributes, where needed
* Updates Clang12 patch notes mentioning this change
Reviewed-by: rsmith, jdoerfert
Differential Revision: https://reviews.llvm.org/D17993
Summary:
This patch addresses https://bugs.llvm.org/show_bug.cgi?id=46256
The spec of coroutine requires that the expression co_await promise.final_suspend() shall not be potentially-throwing.
To check this, we recursively look at every call (including Call, MemberCall, OperatorCall and Constructor) in all code
generated by the final suspend, and ensure that the callees are declared with noexcept. We also look at any returned data
type that requires explicit destruction, and check their destructors for noexcept.
This patch does not check declarations with dependent types yet, which will be done in future patches.
Updated all tests to add noexcept to the required functions, and added a dedicated test for this patch.
This patch might start to cause existing codebase fail to compile because most people may not have been strict in tagging
all the related functions noexcept.
Reviewers: lewissbaker, modocache, junparser
Reviewed By: modocache
Subscribers: arphaman, junparser, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82029
If we're going to assume references are dereferenceable, we should also
assume they're aligned: otherwise, we can't actually dereference them.
See also D80072.
Differential Revision: https://reviews.llvm.org/D80166
Summary:
Clang -fpic defaults to -fno-semantic-interposition (GCC -fpic defaults
to -fsemantic-interposition).
Users need to specify -fsemantic-interposition to get semantic
interposition behavior.
Semantic interposition is currently a best-effort feature. There may
still be some cases where it is not handled well.
Reviewers: peter.smith, rnk, serge-sans-paille, sfertile, jfb, jdoerfert
Subscribers: dschuff, jyknight, dylanmckay, nemanjai, jvesely, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, arphaman, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73865
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.
Also modifies the parser to accept IR in that form for obvious reasons.
llvm-svn: 367755
This reverts commit https://reviews.llvm.org/rL344150 which causes
MachineOutliner related failures on the ppc64le multistage buildbot.
llvm-svn: 344526
This is currently a clang extension and a resolution
of the defect report in the C++ Standard.
Differential Revision: https://reviews.llvm.org/D46441
llvm-svn: 344150
Summary:
Depends on https://reviews.llvm.org/D42605.
An implementation of the behavior described in `[dcl.fct.def.coroutine]/7`:
when a promise type overloads `operator new` using a "placement new"
that takes the same argument types as the coroutine function, that
overload is used when allocating the coroutine frame.
Simply passing references to the coroutine function parameters directly
to `operator new` results in invariant violations in LLVM's coroutine
splitting pass, so this implementation modifies Clang codegen to
produce allocator-specific alloc/store/loads for each parameter being
forwarded to the allocator.
Test Plan: `check-clang`
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: lewissbaker, EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D42606
llvm-svn: 325291
Summary:
Use corutine function arguments to initialize a promise type, but only
if the promise type defines a constructor that takes those arguments.
Otherwise, fall back to the default constructor.
Test Plan: check-clang
Reviewers: rsmith, GorNishanov, eric_niebler
Reviewed By: GorNishanov
Subscribers: toby-allsopp, lewissbaker, EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D41820
llvm-svn: 323381
Summary:
We were not handling correctly rebuilding of parameter and were not creating copies for them.
Now we will always rebuild parameter moves in TreeTransform's TransformCoroutineBodyStmt.
Reviewers: rsmith, GorNishanov
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33797
llvm-svn: 304620
Summary:
Simple types like int are handled by LLVM Coroutines just fine.
But for non-scalar parameters we need to create copies of those parameters in the coroutine frame and make all uses of those parameters to refer to parameter copies.
Reviewers: rsmith, EricWF, GorNishanov
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33507
llvm-svn: 303803