It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
Now that SmallString is a first-class citizen, most SmallString::str()
calls are not required. This patch removes a whole bunch of them, yet
there are lots more.
There are two use cases where str() is really needed:
1) To use one of StringRef member functions which is not available in
SmallString.
2) To convert to std::string, as StringRef implicitly converts while
SmallString do not. We may wish to change this, but it may introduce
ambiguity.
llvm-svn: 232622
check that private headers are in a list matching the role. (We can't perform
the opposite checks for non-private headers because we infer those.)
llvm-svn: 231728
If a module map contains
framework module * [extern_c] {}
We will now infer [extern_c] on the inferred framework modules (we
already inferred [system] as a special case).
llvm-svn: 225803
Original commit message:
[modules] Add experimental -fmodule-map-file-home-is-cwd flag to -cc1.
For files named by -fmodule-map-file=, and files found by 'extern module'
directives, this flag specifies that we should resolve filenames relative to
the current working directory rather than relative to the directory in which
the module map file resides. This is aimed at fixing path handling, in
particular for relative -I paths, when building modules that represent
components of the current project (rather than libraries installed on the
current system, which the current project has as dependencies, where we'd
typically expect the module map files to be looked up implicitly).
llvm-svn: 223913
For files named by -fmodule-map-file=, and files found by 'extern module'
directives, this flag specifies that we should resolve filenames relative to
the current working directory rather than relative to the directory in which
the module map file resides. This is aimed at fixing path handling, in
particular for relative -I paths, when building modules that represent
components of the current project (rather than libraries installed on the
current system, which the current project has as dependencies, where we'd
typically expect the module map files to be looked up implicitly).
llvm-svn: 223753
rather than trying to extract this information from the FileEntry after the
fact.
This has a number of beneficial effects. For instance, diagnostic messages for
failed module builds give a path relative to the "module root" rather than an
absolute file path, and the contents of the module includes file is no longer
dependent on what files the including TU happened to inspect prior to
triggering the module build.
llvm-svn: 223095
This was not a real header role, and was never exposed to clients of ModuleMap.
Remove the enumeration value for it and track it as marking the header as
'known' rather than creating an extra KnownHeader entry that *every single*
client ignores.
llvm-svn: 220460
This allows a module to specify that it logically contains a file, but that
said file is non-modular and intended for textual inclusion. This allows
layering checks to work properly in the presence of such files.
llvm-svn: 220448
#include_next interacts poorly with modules: it depends on where in the list of
include paths the current file was found. Files covered by module maps are not
found in include search paths when building the module (and are not found in
include search paths when @importing the module either), so this isn't really
meaningful. Instead, we fake up the result that #include_next *should* have
given: find the first path that would have resulted in the given file being
picked, and search from there onwards.
llvm-svn: 220177
We already verified the primary module map file (either the one that
defines the top-level module, or the one that allows inferring it if it
is an inferred framework module). Now we also verify any other module
map files that define submodules, such as when there is a
module.private.modulemap file.
llvm-svn: 215455
class Module. It's almost always going to be the same as
getContainingModule() for top-level modules, so just add a map to cover
the remaining cases. This lets us do less bookkeeping to keep the
ModuleMap fields up to date.
llvm-svn: 215268
Just because we can open a directory named "COcoa.framework" doesn't
mean we should provide a "COcoa" module on a case-insensitive filesystem.
llvm-svn: 212975
But keep -Wnon-modular-include-in-[framework-]module
This warning is too noisy and doesn't really indicate a problem for most
people. Even though it would only really affect people using
-Weverything, that seems bad so remove it.
llvm-svn: 208345
Warn on non-modular includes in various contexts.
-Wnon-modular-include
-Wnon-modular-include-in-module
-Wnon-modular-include-in-framework-module
Where each group is a subgroup of those above it.
llvm-svn: 208004
Otherwise including a header in your source file that is not included by
framework's umbrella header will silently add an empty submodule with that
name.
is automatically translated to
@import Foo.NotInModule;
which then would have succeeded because the inferred module map
contained an empty submodule called NotInModule.
llvm-svn: 207024
Unless they are in submodules that aren't available anyway, due to
requirements not being met. Also, mark children as unavailable when the
parent is.
llvm-svn: 206664
To differentiate between two modules with the same name, we will
consider the path the module map file that they are defined by* part of
the ‘key’ for looking up the precompiled module (pcm file).
Specifically, this patch renames the precompiled module (pcm) files from
cache-path/<module hash>/Foo.pcm
to
cache-path/<module hash>/Foo-<hash of module map path>.pcm
In addition, I’ve taught the ASTReader to re-resolve the names of
imported modules during module loading so that if the header search
context changes between when a module was originally built and when it
is loaded we can rebuild it if necessary. For example, if module A
imports module B
first time:
clang -I /path/to/A -I /path/to/B ...
second time:
clang -I /path/to/A -I /different/path/to/B ...
will now rebuild A as expected.
* in the case of inferred modules, we use the module map file that
allowed the inference, not the __inferred_module.map file, since the
inferred file path is the same for every inferred module.
llvm-svn: 206201
This name, while more verbose, plays more nicely with tools that use
file extensions to determine file types. The existing spelling
'module.map' will continue to work, but the new spelling will take
precedence.
In frameworks, this new filename will only go in a new 'Modules'
sub-directory.
Similarly, add a module.private.modulemap corresponding to
module_private.map.
llvm-svn: 204261
that implicitly converts to 'bool' (such as pointers, and the first operand of
?:). Clean up issues found by this. Patch by Stephan Tolksdorf!
llvm-svn: 203735
Add module dependencies to the dependency files created by -MD/-MMD/etc.
by attaching an ASTReaderListener that will call into the dependency
file generator when a module input file is seen in the serialized AST.
llvm-svn: 203208
If a header file belonging to a certain module is not found on the
filesystem, that header gets marked as unavailable. Now, the layering
warning (-fmodules-decluse) should still warn about headers of this
module being wrongfully included. Currently, headers belonging to those
modules are just treated as not belonging to modules at all which means
they can be included freely from everywhere.
To implement this (somewhat) cleanly, I have moved most of the layering
checks into the ModuleMap. This will also help with showing FixIts
later.
llvm-svn: 197805