With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263490
As noted in:
https://llvm.org/bugs/show_bug.cgi?id=26636
This doesn't accomplish anything on its own. It's the first step towards preserving
and using branch weights with selects.
The next step would be to make sure we're propagating the info in all of the other
places where we create selects (SimplifyCFG, InstCombine, etc). I don't think there's
an easy fix to make this happen; we have to look at each transform individually to
determine how to correctly propagate the weights.
Along with that step, we need to then use the weights when making subsequent transform
decisions such as discussed in http://reviews.llvm.org/D16836.
The inliner test is independent but closely related. It verifies that metadata is
preserved when both branches and selects are cloned.
Differential Revision: http://reviews.llvm.org/D18133
llvm-svn: 263482
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage. Re-landed here with no changes.
Reviewers: chandlerc, jingyue
Subscribers: llvm-commits, tra, jhen, hfinkel
Differential Revision: http://reviews.llvm.org/D17739
llvm-svn: 263481
When the SP in not changed because of realignment/VLAs etc., we restore the SP
by using the previous value of SP and not the FP. Breaking the dependency will
help in cases when the epilog of a callee is close to the epilog of the caller;
for then "sub sp, fp, #" depends on the load restoring the FP in the epilog of
the callee.
http://reviews.llvm.org/D18060
Patch by Aditya Kumar and Evandro Menezes.
llvm-svn: 263458
Converting masked vector loads to regular vector loads for x86 AVX should always be a win.
I raised the legality issue of reading the extra memory bytes on llvm-dev. I did not see any
objections.
1. x86 already does this kind of optimization for multiple scalar loads -> vector load.
2. If other targets have the same flexibility, we could move this transform up to CGP or DAGCombiner.
Differential Revision: http://reviews.llvm.org/D18094
llvm-svn: 263446
Summary:
MIPSR6 introduces a class of branches called compact branches. Unlike the
traditional MIPS branches which have a delay slot, compact branches do not
have a delay slot. The instruction following the compact branch is only
executed if the branch is not taken and must not be a branch.
It works by generating compact branches for MIPS32R6 when the delay slot
filler cannot fill a delay slot. Then, inspecting the generated code for
forbidden slot hazards (a compact branch with an adjacent branch or other
CTI) and inserting nops to clear this hazard.
Patch by Simon Dardis.
Reviewers: vkalintiris, dsanders
Subscribers: MatzeB, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D16353
llvm-svn: 263444
Summary:
When multiple threads perform an atomic op with the same arguments, they
will usually see different return values.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18101
llvm-svn: 263440
On the z13, it turns out to be more efficient to access a full
floating-point register than just the upper half (as done e.g.
by the LE and LER instructions).
Current code already takes this into account when loading from
memory by using the LDE instruction in place of LE. However,
we still generate LER, which shows the same performance issues
as LE in certain circumstances.
This patch changes the back-end to emit LDR instead of LER to
implement FP32 register-to-register copies on z13.
llvm-svn: 263431
s_bitset0_b64, s_bitset1_b64 has 32-bit src0, not 64-bit.
s_rfe_b64 has just one destination operand and no source.
Uncomment S_BITCMP* and S_SETVSKIP, adjust SOPC_* classes for that.
Add s_memrealtime test and change comments in smem.s to follow common style.
Change test for s_memtime to use non-zero register to make it really test encoding.
Add tests for s_buffer_load*.
Add tests for SOPC instructions (same for SI and VI)
Differential Revision: http://reviews.llvm.org/D18040
llvm-svn: 263420
The motivating example is this
for (j = n; j > 1; j = i) {
i = j / 2;
}
The signed division is safely to be changed to an unsigned division (j is known
to be larger than 1 from the loop guard) and later turned into a single shift
without considering the sign bit.
llvm-svn: 263406
For cases where we are truncating an integer vector arithmetic result, it may be better to pre-truncate the input operands - no code to support this yet (scalar is done with SimplifyDemandedBits but adding vector support could be a lot of work) but these tests represent the current codegen status.
Example bugs: PR14666, PR22703
llvm-svn: 263384
The SSE41 v8i16 shift lowering using (v)pblendvb is great for non-constant shift amounts, but if it is constant then we can efficiently reduce the VSELECT to shuffles with the pre-SSE41 lowering.
llvm-svn: 263383
This follows up on the related AVX instruction transforms, but this
one is too strange to do anything more with. Intel's behavioral
description of this instruction in its Software Developer's Manual
is tragi-comic.
llvm-svn: 263340
This patch corresponds to review:
http://reviews.llvm.org/D17712
We were not clearing the TOC vector in PPCAsmPrinter when initializing it. This
caused duplicate definition asserts when the pass is reused on the module
(i.e. with -compile-twice or in JIT contexts).
llvm-svn: 263338
This lets us for example start running the unit test suite early. For
'check-llvm' on my machine, this drops the tim e from 44s to 32s!!!!!
It's pretty ugly. I barely know how to write Python, so feel free to
just tell me how I should write it instead. =D Thanks to Filipe and
others for help.
Differential Revision: http://reviews.llvm.org/D18089
llvm-svn: 263329
cmpxchg[8|16]b uses RBX as one of its argument.
In other words, using this instruction clobbers RBX as it is defined to hold one
the input. When the backend uses dynamically allocated stack, RBX is used as a
reserved register for the base pointer.
Reserved registers have special semantic that only the target understands and
enforces, because of that, the register allocator don’t use them, but also,
don’t try to make sure they are used properly (remember it does not know how
they are supposed to be used).
Therefore, when RBX is used as a reserved register but defined by something that
is not compatible with that use, the register allocator will not fix the
surrounding code to make sure it gets saved and restored properly around the
broken code. This is the responsibility of the target to do the right thing with
its reserved register.
To fix that, when the base pointer needs to be preserved, we use a different
pseudo instruction for cmpxchg that save rbx.
That pseudo takes two more arguments than the regular instruction:
- One is the value to be copied into RBX to set the proper value for the
comparison.
- The other is the virtual register holding the save of the value of RBX as the
base pointer. This saving is done as part of isel (i.e., we emit a copy from
rbx).
cmpxchg_save_rbx <regular cmpxchg args>, input_for_rbx_reg, save_of_rbx_as_bp
This gets expanded into:
rbx = copy input_for_rbx_reg
cmpxchg <regular cmpxchg args>
rbx = save_of_rbx_as_bp
Note: The actual modeling of the pseudo is a bit more complicated to make sure
the interferes that appears after the pseudo gets expanded are properly modeled
before that expansion.
This fixes PR26883.
llvm-svn: 263325
Summary: As we now have unit-tests for UnrollAnalyzer, we can convert some existing tests to this format. It should make the tests more robust.
Reviewers: chandlerc, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17904
llvm-svn: 263318
Improve vector extension of vectors on hardware without dedicated VSEXT/VZEXT instructions.
We already convert these to SIGN_EXTEND_VECTOR_INREG/ZERO_EXTEND_VECTOR_INREG but can further improve this by using the legalizer instead of prematurely splitting into legal vectors in the combine as this only properly helps for lowering to VSEXT/VZEXT.
Removes a lot of unnecessary any_extend + mask pattern - (Fix for PR25718).
Differential Revision: http://reviews.llvm.org/D17932
llvm-svn: 263303
Summary:
This intrinsic, together with deoptimization operand bundles, allow
frontends to express transfer of control and frame-local state from
one (typically more specialized, hence faster) version of a function
into another (typically more generic, hence slower) version.
In languages with a fully integrated managed runtime this intrinsic can
be used to implement "uncommon trap" like functionality. In unmanaged
languages like C and C++, this intrinsic can be used to represent the
slow paths of specialized functions.
Note: this change does not address how `@llvm.experimental_deoptimize`
is lowered. That will be done in a later change.
Reviewers: chandlerc, rnk, atrick, reames
Subscribers: llvm-commits, kmod, mjacob, maksfb, mcrosier, JosephTremoulet
Differential Revision: http://reviews.llvm.org/D17732
llvm-svn: 263281
Value profile instrumentation treats inline asm calls like they are
indirect calls. This causes problems when the 'Callee' is passed to a
ptrtoint cast -- the verifier rightly claims that this is bogus and
crashes opt.
llvm-svn: 263278
Summary:
This patch adds support for including a full reference graph including
call graph edges and other GV references in the summary.
The reference graph edges can be used to make importing decisions
without materializing any source modules, can be used in the plugin
to make file staging decisions for distributed build systems, and is
expected to have other uses.
The call graph edges are recorded in each function summary in the
bitcode via a list of <CalleeValueIds, StaticCount> tuples when no PGO
data exists, or <CalleeValueId, StaticCount, ProfileCount> pairs when
there is PGO, where the ValueId can be mapped to the function GUID via
the ValueSymbolTable. In the function index in memory, the call graph
edges reference the target via the CalleeGUID instead of the
CalleeValueId.
The reference graph edges are recorded in each summary record with a
list of referenced value IDs, which can be mapped to value GUID via the
ValueSymbolTable.
Addtionally, a new summary record type is added to record references
from global variable initializers. A number of bitcode records and data
structures have been renamed to reflect the newly expanded scope of the
summary beyond functions. More cleanup will follow.
Reviewers: joker.eph, davidxl
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D17212
llvm-svn: 263275
Its not enough that we test for SSSE3 - that's only OK for 128-bit vectors - we also need to test for AVX2 / AVX512BW for 256/512 bit vector cases.
llvm-svn: 263239
The constant is now at source operand 1 (previously at 2).
This is also how it is in legacy AMD sp3 assembler.
Update tests.
Differential Revision: http://reviews.llvm.org/D17984
llvm-svn: 263212
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
llvm-svn: 263208
llvm::getDISubprogram walks the instructions in a function, looking for one in the scope of the current function, so that it can find the !dbg entry for the subprogram itself.
Now that !dbg is attached to functions, this should not be necessary. This patch changes all uses to just query the subprogram directly on the function.
Ideally this should be NFC, but in reality its possible that a function:
has no !dbg (in which case there's likely a bug somewhere in an opt pass), or
that none of the instructions had a scope referencing the function, so we used to not find the !dbg on the function but now we will
Reviewed by Duncan Exon Smith.
Differential Revision: http://reviews.llvm.org/D18074
llvm-svn: 263184