This merges more AMDGPU ABI lowering code into the generic call
lowering. Start cleaning up by factoring away more of the pack/unpack
logic into the buildCopy{To|From}Parts functions. These could use more
improvement, and the SelectionDAG versions are significantly more
complex, and we'll eventually have to emulate all of those cases too.
This is mostly NFC, but does result in some minor instruction
reordering. It also removes some of the limitations with mismatched
sizes the old code had. However, similarly to the merge on the input,
this is forcing gfx6/gfx7 to use the gfx8+ ABI (which is what we
actually want, but SelectionDAG is stuck using the weird emergent
ABI).
This also changes the load/store size for stack passed EVTs for
AArch64, which makes it consistent with the DAG behavior.
To do this while supporting the existing functionality in SelectionDAG of using
PGO info, we add the ProfileSummaryInfo and LazyBlockFrequencyInfo analysis
dependencies to the instruction selector pass.
Then, use the predicate to generate constant pool loads for f32 materialization,
if we're targeting optsize/minsize.
Differential Revision: https://reviews.llvm.org/D97732
This prepares codegen for a change that will remove the identical
folds from IR because they are not poison-safe. See
D93065 / D97360
for details.
We already generically support scalar types, and there are various
target-specific transforms that overlap the vector folds. For example,
x86 recognizes the and patterns, but not or. We can end up with 1
extra instruction there, but I think that is still preferred over the
blendv alternative that loads a constant vector.
If this is not optimal, then it should be fixed with a later transform
(this change is not expected to result in any regressions because
InstCombine currently does the same thing).
Removing custom code and supporting undefs in constant-pattern-matching
can be follow-up changes.
Differential Revision: https://reviews.llvm.org/D97730
The situation with inline asm/MC error reporting is kind of messy at the
moment. The errors from MC layout are not reliably propagated and users
have to specify an inlineasm handler separately to get inlineasm
diagnose. The latter issue is not a correctness issue but could be improved.
* Kill LLVMContext inlineasm diagnose handler and migrate it to use
DiagnoseInfo/DiagnoseHandler.
* Introduce `DiagnoseInfoSrcMgr` to diagnose SourceMgr backed errors. This
covers use cases like inlineasm, MC, and any clients using SourceMgr.
* Move AsmPrinter::SrcMgrDiagInfo and its instance to MCContext. The next step
is to combine MCContext::SrcMgr and MCContext::InlineSrcMgr because in all
use cases, only one of them is used.
* If LLVMContext is available, let MCContext uses LLVMContext's diagnose
handler; if LLVMContext is not available, MCContext uses its own default
diagnose handler which just prints SMDiagnostic.
* Change a few clients(Clang, llc, lldb) to use the new way of reporting.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D97449
The current narrowing code for G_PHI can only handle the case
where the size is a multiple of the narrow size. If this is not
the case, fall back to SDAG instead of asserting.
Original patch by shepmaster.
Differential Revision: https://reviews.llvm.org/D92446
Generic code should probably not introduce G_INSERT/G_EXTRACT. The
mirror unpackRegs should also be removed, but AMDGPU still has a use
remaining which needs to be fixed.
This seems to be more of a Clang thing rather than a generic LLVM thing,
so this moves it out of LLVM pipelines and as Clang extension hooks into
LLVM pipelines.
Move the post-inline EEInstrumentation out of the backend pipeline and
into a late pass, similar to other sanitizer passes. It doesn't fit
into the codegen pipeline.
Also fix up EntryExitInstrumentation not running at -O0 under the new
PM. PR49143
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D97608
The code previously used two BUILD_PAIRs to concatenate the two UMULO
results with 0s in the lower bits to match original VT. Then it created
an ADD and a UADDO with the original bit width. Each of those operations
need to be expanded since they have illegal types.
Since we put 0s in the lower bits before the ADD, the lower half of the
ADD result will be 0. So the lower half of the UADDO result is
solely determined by the other operand. Since the UADDO need to
be split in half, we don't really needd an operation for the lower
bits. Unfortunately, we don't see that in type legalization and end up
creating something more complicated and DAG combine or
lowering aren't always able to recover it.
This patch directly generates the narrower ADD and UADDO to avoid
needing to legalize them. Now only the MUL is done on the original
type.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97440
I copied the nearly identical function from AArch64 into AMDGPU, so
fix this duplication.
Mips and X86 have their own more exotic versions which should be
removed. However replacing those is better left for a separate patch
since it requires other changes to avoid regressions.
This patch addresses issues arising from the fact that the index type
used for subvector insertion/extraction is inconsistent between the
intrinsics and SDNodes. The intrinsic forms require i64 whereas the
SDNodes use the type returned by SelectionDAG::getVectorIdxTy.
Rather than update the intrinsic definitions to use an overloaded index
type, this patch fixes the issue by transforming the index to the
correct type as required. Any loss of index bits going from i64 to a
smaller type is unexpected, and will be caught by an assertion in
SelectionDAG::getVectorIdxConstant.
The patch also updates the documentation for INSERT_SUBVECTOR and adds
an assertion to its creation to bring it in line with EXTRACT_SUBVECTOR.
This necessitated changes to AArch64 which was using i64 for
EXTRACT_SUBVECTOR but i32 for INSERT_SUBVECTOR. Only one test changed
its codegen after updating the backend accordingly.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D97459
Currently dead gc value mentioned in the deopt section are not listed in gc section
and so are processed separately.
With this CL all deopt gc values are considered as base pointers and processed in the
same way as other gc values.
The fact that deopt gc pointer is a base pointer was used all the time but
it is explicitly documented here by putting the value in SI.Base.
The idea of the patch comes from Philip Reames.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D97554
If the type of the deopt operand has an illegal type and we want to use
register for it then it needs to be legalized.
This is not supported currently by legalizer and it is not actually clear how to
legalize this type of values.
Instead we just spill such values and use spill slot location in statepoint.
Originally tests were created by Philip Reames.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D97541
Peeking through AND is only valid if the input to both shifts is
the same. If the inputs are different, then the original pattern
ORs the two values when the masked shift amount is 0. This is ok
if the values are the same since the OR would be a NOP which is
why its ok for rotate.
Fixes PR49365 and reverts PR34641
Differential Revision: https://reviews.llvm.org/D97637
Even if the first computeKnownBits call doesn't have any zero
bits it is possible the other operand has bitwidth-1 leading zero.
In that case overflow is still impossible. So always call computeKnownBits
for both operands.
D97247 added the reverse mapping from unwind destination to their
source, but it had a critical bug; sources can be multiple, because
multiple BBs can have a single BB as their unwind destination.
This changes `WasmEHFuncInfo::getUnwindSrc` to `getUnwindSrcs` and makes
it return a vector rather than a single BB. It does not return the const
reference to the existing vector but creates a new vector because
`WasmEHFuncInfo` stores not `BasicBlock*` or `MachineBasicBlock*` but
`PointerUnion` of them. Also I hoped to unify those methods for
`BasicBlock` and `MachineBasicBlock` into one using templates to reduce
duplication, but failed because various usages require `BasicBlock*` to
be `const` but it's hard to make it `const` for `MachineBasicBlock`
usages.
Fixes https://github.com/emscripten-core/emscripten/issues/13514.
(More precisely, fixes
https://github.com/emscripten-core/emscripten/issues/13514#issuecomment-784708744)
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97583
If a global object is listed in `@llvm.used`, place it in a unique section with
the `SHF_GNU_RETAIN` flag. The section is a GC root under `ld --gc-sections`
with LLD>=13 or GNU ld>=2.36.
For front ends which do not expect to see multiple sections of the same name,
consider emitting `@llvm.compiler.used` instead of `@llvm.used`.
SHF_GNU_RETAIN is restricted to ELFOSABI_GNU and ELFOSABI_FREEBSD in
binutils. We don't do the restriction - see the rationale in D95749.
The integrated assembler has supported SHF_GNU_RETAIN since D95730.
GNU as>=2.36 supports section flag 'R'.
We don't need to worry about GNU ld support because older GNU ld just ignores
the unknown SHF_GNU_RETAIN.
With this change, `__attribute__((retain))` functions/variables emitted
by clang will get the SHF_GNU_RETAIN flag.
Differential Revision: https://reviews.llvm.org/D97448
Using ComputeNumSignBits or computeKnownBits we might be able
to determine that overflow is impossible.
This especially helps after type legalization if the type was
promoted from a type with half the bits or more. Type legalization
conservatively creates a promoted smulo/umulo and an overflow
check for the promoted bits. The overflow from the promoted
smulo/umulo is ORed with the result of the promoted bits
overflow check. Proving that the promoted smulo/umulo can never
overflow will leave us with just the promoted bits overflow check.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97160
remove `Hi` `Lo` argument from `emitDwarfUnitLength`, so we
can make caller of emitDwarfUnitLength easier.
Reviewed By: MaskRay, dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D96409
And then push those change throughout LLVM.
Keep the old signature in Clang's CGBuilder for now -- that will be
updated in a follow-on patch (D97224).
The MLIR LLVM-IR dialect is not updated to support the new alignment
attribute, but preserves its existing behavior.
Differential Revision: https://reviews.llvm.org/D97223
When calling SelectionDAG::getNode() to create an ADD or SUB
of two vectors with i1 element types we can canonicalise this
to use XOR instead, where 1+1 is treated as wrapping around
to 0 and 0-1 wraps to 1.
I've added the following tests for SVE targets:
CodeGen/AArch64/sve-pred-arith.ll
and modified some X86 tests to reflect the much simpler codegen
required.
Differential Revision: https://reviews.llvm.org/D97276
Rather than converting 3 signbits to bools and comparing them,
we can do bitwise logic on the whole vector and convert the
resulting sign bit to a bool at the end.
This is still a different algorithm than what we do in LegalizeDAG
through expandSADDOSSUBO. That algorithm needs to know that the
RHS of SSUBO is > 0, but that's costly when the type is split.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97325
This reverts commit 6b286d93f7 because
in some cases when the optimizer evaluates the global initializer,
__llvm_prf_cnts may not be entirely zero initialized.
We know the input is going to be expanded as well, so we should
just ask for the already expanded operands. Otherwise we create
nodes that are just going to need to be legalized.
We may need to do some customization for DWARF unit length in DWARF
section headers for some targets for some code generation path.
For example, for XCOFF in assembly path, AIX assembler does not require
the debug section containing its debug unit length in the header.
Move emitDwarfUnitLength to MCStreamer class so that we can do
customization in different Streamers
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D95932
This CL is not big but contains changes that span multiple analyses and
passes. This description is very long because it tries to explain basics
on what each pass/analysis does and why we need this change on top of
that. Please feel free to skip parts that are not necessary for your
understanding.
---
`WasmEHFuncInfo` contains the mapping of <EH pad, the EH pad's next
unwind destination>. The value (unwind dest) here is where an exception
should end up when it is not caught by the key (EH pad). We record this
info in WasmEHPrepare to fix catch mismatches, because the CFG itself
does not have this info. A CFG only contains BBs and
predecessor-successor relationship between them, but in `WasmEHFuncInfo`
the unwind destination BB is not necessarily a successor or the key EH
pad BB. Their relationship can be intuitively explained by this C++ code
snippet:
```
try {
try {
foo();
} catch (int) { // EH pad
...
}
} catch (...) { // unwind destination
}
```
So when `foo()` throws, it goes to `catch (int)` first. But if it is not
caught by it, it ends up in the next unwind destination `catch (...)`.
This unwind destination is what you see in `catchswitch`'s
`unwind label %bb` part.
---
`WebAssemblyExceptionInfo` groups exceptions so that they can be sorted
continuously together in CFGSort, as we do for loops. What this analysis
does is very simple: it creates a single `WebAssemblyException` per EH
pad, and all BBs that are dominated by that EH pad are included in this
exception. We also identify subexception relationship in this way: if
EHPad A domiantes EHPad B, EHPad B's exception is a subexception of
EHPad A's exception.
This simple rule turns out to be incorrect in some cases. In
`WasmEHFuncInfo`, if EHPad A's unwind destination is EHPad B, it means
semantically EHPad B should not be included in EHPad A's exception,
because it does not make sense to rethrow/delegate to an inner scope.
This is what happened in CFGStackify as a result of this:
```
try
try
catch
... <- %dest_bb is among here!
end
delegate %dest_bb
```
So this patch adds a phase in `WebAssemblyExceptionInfo::recalculate` to
make sure excptions' unwind destinations are not subexceptions of
their unwind sources in `WasmEHFuncInfo`.
But this alone does not prevent `dest_bb` in the example above from
being sorted within the inner `catch`'s exception, even if its exception
is not a subexception of that `catch`'s exception anymore, because of
how CFGSort works, which will be explained below.
---
CFGSort places BBs within the same `SortRegion` (loop or exception)
continuously together so they can be demarcated with `loop`-`end_loop`
or `catch`-`end_try` in CFGStackify.
`SortRegion` is a wrapper for one of `MachineLoop` or
`WebAssemblyException`. `SortRegionInfo` already does some complicated
things because there discrepancies between those two data structures.
`WebAssemblyException` is what we control, and it is defined as an EH
pad as its header and BBs dominated by the header as its BBs (with a
newly added exception of unwind destinations explained in the previous
paragraph). But `MachineLoop` is an LLVM data structure and uses the
standard loop detection algorithm. So by the algorithm, BBs that are 1.
dominated by the loop header and 2. have a path back to its header.
Because of the second condition, many BBs that are dominated by the loop
header are not included in the loop. So BBs that contain `return` or
branches to outside of the loop are not technically included in
`MachineLoop`, but they can be sorted together with the loop with no
problem.
Maybe to relax the condition, in CFGSort, when we are in a `SortRegion`
we allow sorting of not only BBs that belong to the current innermost
region but also BBs that are by the current region header.
(This was written this way from the first version written by Dan, when
only loops existed.) But now, we have cases in exceptions when EHPad B
is the unwind destination for EHPad A, even if EHPad B is dominated by
EHPad A it should not be included in EHPad A's exception, and should not
be sorted within EHPad A.
One way to make things work, at least correctly, is change `dominates`
condition to `contains` condition for `SortRegion` when sorting BBs, but
this will change compilation results for existing non-EH code and I
can't be sure it will not degrade performance or code size. I think it
will degrade performance because it will force many BBs dominated by a
loop, which don't have the path back to the header, to be placed after
the loop and it will likely to create more branches and blocks.
So this does a little hacky check when adding BBs to `Preferred` list:
(`Preferred` list is a ready list. CFGSort maintains ready list in two
priority queues: `Preferred` and `Ready`. I'm not very sure why, but it
was written that way from the beginning. BBs are first added to
`Preferred` list and then some of them are pushed to `Ready` list, so
here we only need to guard condition for `Preferred` list.)
When adding a BB to `Preferred` list, we check if that BB is an unwind
destination of another BB. To do this, this adds the reverse mapping,
`UnwindDestToSrc`, and getter methods to `WasmEHFuncInfo`. And if the BB
is an unwind destination, it checks if the current stack of regions
(`Entries`) contains its source BB by traversing the stack backwards. If
we find its unwind source in there, we add the BB to its `Deferred`
list, to make sure that unwind destination BB is added to `Preferred`
list only after that region with the unwind source BB is sorted and
popped from the stack.
---
This does not contain a new test that crashes because of this bug, but
this fix changes the result for one of existing test case. This test
case didn't crash because it fortunately didn't contain `delegate` to
the incorrectly placed unwind destination BB.
Fixes https://github.com/emscripten-core/emscripten/issues/13514.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D97247
In every catchpad except `catch (...)`, we add a call to
`_Unwind_CallPersonality`, which is a wapper to call the personality
function. (In most of other Itanium-based architectures the call is done
from libunwind, but in wasm we don't have the control over the VM.)
Because the personatlity function is called to figure out whether the
current exception is a type we should catch, such as `int` or
`SomeClass&`, `catch (...)` does not need the personality function call.
For the same reason, all cleanuppads don't need it.
When we call `_Unwind_CallPersonality`, we store some necessary info in
a data structure called `__wasm_lpad_context` of type
`_Unwind_LandingPadContext`, which is defined in the wasm's port of
libunwind in Emscripten. Also the personality wrapper function returns
some info (selector and the caught pointer) in that data structure, so
it is used as a medium for communication.
One of the info we need to store is the address for LSDA info for the
current function. `wasm.lsda()` intrinsic returns that address. (This
intrinsic will be lowered to a symbol that points to the LSDA address.)
The simpliest thing is call `wasm.lsda()` every time we need to call
`_Unwind_CallPersonality` and store that info in `__wasm_lpad_context`
data structure. But we tried to be better than that (D77423 and some
more previous CLs), so if catchpad A dominates catchpad B and catchpad A
is not `catch (...)`, we didn't insert `wasm.lsda()` call in catchpad B,
thinking that the LSDA address is the same for a single function and we
already visited catchpad A and `__wasm_lpad_context.lsda` field would
already have that value.
But this can be incorrect if there is a call to another function, which
also can have the personality function and LSDA, between catchpad A and
catchpad B, because `__wasm_lpad_context` is a globally defined
structure and the callee function will overwrite its `lsda` field.
So in this CL we don't try to do any optimizaions on adding
`wasm.lsda()` call; we store the result of `wasm.lsda()` every time we
call `_Unwind_CallPersonality`. We can do some complicated analysis,
like checking if there is a function call between the dominating
catchpad and the current catchpad, but at this time it seems overkill.
This deletes three tests because they all tested `wasm.ldsa()` call
optimization.
Fixes https://github.com/emscripten-core/emscripten/issues/13548.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D97309