The option has no tests, is not used anywhere, and is actually
incorrect: it prints the line number without the reference to a file,
which can be outright incorrect.
Differential Revision: https://reviews.llvm.org/D55385
llvm-svn: 348637
Summary:
We introduce a strict policy for C++ CTU. It can work across TUs only if
the C++ dialects are the same. We neither allow C vs C++ CTU. We do this
because the same constructs might be represented with different properties in
the corresponding AST nodes or even the nodes might be completely different (a
struct will be RecordDecl in C, but it will be a CXXRectordDecl in C++, thus it
may cause certain assertions during cast operations).
Reviewers: xazax.hun, a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Differential Revision: https://reviews.llvm.org/D55134
llvm-svn: 348610
Summary:
Adding some more CTU list tests. E.g. to check if a construct is unsupported.
We also slightly modify the handling of the return value of the `Import`
function from ASTImporter.
Reviewers: xazax.hun, balazske, a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Differential Revision: https://reviews.llvm.org/D55131
llvm-svn: 348605
Inline cpu_specific versions referenced before the cpu_dispatch function
weren't properly emitted, since they hadn't been referred to. This
patch ensures that during resolver generation that all appropriate
versions are emitted.
Change-Id: I94c3766aaf9c75ca07a0ad8258efdbb834654ff8
llvm-svn: 348600
This reverts commit 65df29f9318ac13a633c0ce13b2b0bccf06e79ca.
AS suggested by @rsmith here: https://reviews.llvm.org/rL345839
I'm reverting this and solving the initial problem in a different way.
llvm-svn: 348595
Summary:
With a new switch we may be able to print to stderr if a new TU is being loaded
during CTU. This is very important for higher level scripts (like CodeChecker)
to be able to parse this output so they can create e.g. a zip file in case of
a Clang crash which contains all the related TU files.
Reviewers: xazax.hun, Szelethus, a_sidorin, george.karpenkov
Subscribers: whisperity, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, donat.nagy, dkrupp,
Differential Revision: https://reviews.llvm.org/D55135
llvm-svn: 348594
Summary:
...that fires when running completion inside an argument of
UnresolvedMemberExpr (see the added test).
The assertion that fires is from Sema::TryObjectArgumentInitialization:
assert(FromClassification.isLValue());
This happens because Sema::AddFunctionCandidates does not account for
object types which are pointers. It ends up classifying them incorrectly.
All usages of the function outside code completion are used to run
overload resolution for operators. In those cases the object type being
passed is always a non-pointer type, so it's not surprising the function
did not expect a pointer in the object argument.
However, code completion reuses the same function and calls it with the
object argument coming from UnresolvedMemberExpr, which can be a pointer
if the member expr is an arrow ('->') access.
Extending AddFunctionCandidates to allow pointer object types does not
seem too crazy since all the functions down the call chain can properly
handle pointer object types if we properly classify the object argument
as an l-value, i.e. the classification of the implicitly dereferenced
pointer.
Reviewers: kadircet
Reviewed By: kadircet
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55331
llvm-svn: 348590
Summary:
We plan to introduce additional CTU related lit test. Since lit may run the
tests in parallel, it is not safe to use the same directory (%T) for these
tests. It is safe to use however test case specific directories (%t).
Reviewers: xazax.hun, a_sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits
Differential Revision: https://reviews.llvm.org/D55129
llvm-svn: 348587
Summary:
The patch is to add the VSX register support for inline assembly. After this
patch, we can use VSX register in inline assembly clobber list without error.
Reviewed By: jsji, nemanjai
Differential Revision: https://reviews.llvm.org/D55192
llvm-svn: 348572
Thunks that return member pointers via sret are broken due to using temporary
storage for the return value on the stack and then passing that pointer to a
tail call, violating the rule that a tail call can't access allocas in the
caller (see bug).
Since r90526, we put aggregate return values directly in the sret slot, but
this doesn't apply to member pointers which are considered scalar.
Unless I'm missing something subtle, we should be able to always use the sret
slot directly for indirect return values.
Differential revision: https://reviews.llvm.org/D55371
llvm-svn: 348569
Summary:
The call is duplicated in the handlers of all Expr subclasses.
This change makes it easy to split statement handling out to
TextNodeDumper.
Reviewers: aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55339
llvm-svn: 348546
Summary: This call is duplicated in Visits of all direct subclasses of Stmt.
Reviewers: aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55338
llvm-svn: 348545
The attribute specifies that the call of the C++ method consumes a
reference to "this".
Differential Revision: https://reviews.llvm.org/D55155
llvm-svn: 348532
The flag -fdebug-compilation-dir is useful to make generated .o files
independent of the path of the build directory, without making the compile
command-line dependent on the path of the build directory, like
-fdebug-prefix-map requires. This change makes it so that the driver can
forward the flag to -cc1as, like it already can for -cc1. We might want to
consider making -fdebug-compilation-dir a driver flag in a follow-up.
(Since -fdebug-compilation-dir defaults to PWD, it's already possible to get
this effect by setting PWD, but explicit compiler flags are better than env
vars, because e.g. ninja tracks command lines and reruns commands that change.)
Somewhat related to PR14625.
Differential Revision: https://reviews.llvm.org/D55377
llvm-svn: 348515
This reverts commit r348280 and reapplies D55085 without modifications.
Original commit message:
Avoid emitting redundant or unusable directories in DIFile metadata entries.
As discussed on llvm-dev recently, Clang currently emits redundant
directories in DIFile entries, such as
.file 1 "/Volumes/Data/llvm" "/Volumes/Data/llvm/tools/clang/test/CodeGen/debug-info-abspath.c"
This patch looks at any common prefix between the compilation
directory and the (absolute) file path and strips the redundant
part. More importantly it leaves the compilation directory empty if
the two paths have no common prefix.
After this patch the above entry is (assuming a compilation dir of "/Volumes/Data/llvm/_build"):
.file 1 "/Volumes/Data/llvm" "tools/clang/test/CodeGen/debug-info-abspath.c"
When building the FileCheck binary with debug info, this patch makes
the build artifacts ~1kb smaller.
Differential Revision: https://reviews.llvm.org/D55085
llvm-svn: 348513
If the array section is based on pointer and this sections is mapped in
target region + then it is used in the inner parallel region, it also
must be globalized as the pointer itself is passed by value, not by
reference.
llvm-svn: 348492
Friend function template defined in a class template becomes available if
the enclosing class template is instantiated. Until the function template
is used, it does not have a body, but still is considered a definition for
the purpose of redeclaration checks.
This change modifies redefinition check so that it can find the friend
function template definitions in instantiated classes.
Differential Revision: http://reviews.llvm.org/D21508
llvm-svn: 348473
Support the Swift calling convention on Windows ARM and AArch64. Both
of these conform to the AAPCS, AAPCS64 calling convention, and LLVM has
been adjusted to account for the register usage. Ensure that the
frontend passes this into the backend. This allows the swift runtime to
be built for Windows.
llvm-svn: 348454
This patch adds the noderef attribute in clang and checks for dereferences of
types that have this attribute. This attribute is currently used by sparse and
would like to be ported to clang.
Differential Revision: https://reviews.llvm.org/D49511
llvm-svn: 348442
This patch creates a new context for every function definition we enter.
Currently we do not push and pop on these, usually working off of the global
context record added in the Sema constructor, which never gets popped.
Differential Revision: https://reviews.llvm.org/D54014
llvm-svn: 348434
Summary:
Start by moving some utilities to it. It will eventually house dumping
of individual nodes (after indentation etc has already been accounted
for).
Reviewers: aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55189
llvm-svn: 348412
Summary:
Re-order handling of getElementType and getBracketsRange. It is
necessary to perform all printing before any traversal to child nodes.
This causes no change in the output of ast-dump-array.cpp due to the way
child nodes are printed with a delay. This new order of the code is
also the order that produces the expected output anyway.
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55257
llvm-svn: 348409
We would issue a false-positive diagnostic for parameters in function declarations shadowing fields; we now only issue the diagnostic on a function definition instead.
llvm-svn: 348400
This adds a callback to PrintingPolicy to allow CGDebugInfo to remap
file paths according to -fdebug-prefix-map. Otherwise the debug info
(particularly function names for C++ lambdas) may contain paths that
should have been remapped in the debug info.
<rdar://problem/46128056>
Differential Revision: https://reviews.llvm.org/D55137
llvm-svn: 348397
Summary: The change itself landed as r348365, see the comment for more details.
Reviewers: arphaman, EricWF
Reviewed By: arphaman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55322
llvm-svn: 348394
The Entry pointer in IdentifierInfo was only null for IdentifierInfo
created from a PTH. Now that PTH support has been removed we can remove
some PTH specific code in IdentifierInfo::getLength and
IdentifierInfo::getNameStart.
Also make the constructor of IdentifierInfo private to make sure that
they are only created by IdentifierTable, and move it to the header so
that it can be inlined in IdentifierTable::get and IdentifierTable::getOwn.
Differential Revision: https://reviews.llvm.org/D54866
Reviewed By: erichkeane
llvm-svn: 348384
Added new diagnostic when templates are instantiated with
different address space from the one provided in its definition.
This also prevents deducing generic address space in pointer
type of templates to allow giving them concrete address space
during instantiation.
Differential Revision: https://reviews.llvm.org/D55127
llvm-svn: 348382
This patch addresses a compilation error with clang when
running in Haiku being unable to compile code using
float128 (throws compilation error such as 'float128 is
not supported on this target').
Patch by kallisti5 (Alexander von Gluck IV)
Differential Revision: https://reviews.llvm.org/D54901
llvm-svn: 348368
Summary:
The intention is to make the tools replaying compilations from 'compile_commands.json'
(clang-tidy, clangd, etc.) find the same standard library as the original compiler
specified in 'compile_commands.json'.
Previously, the library detection logic was in the frontend (InitHeaderSearch.cpp) and relied
on the value of resource dir as an approximation of the compiler install dir. The new logic
uses the actual compiler install dir and is performed in the driver. This is consistent with
the C++ standard library detection on other platforms and allows to override the resource dir
in the tools using the compile_commands.json without altering the
standard library detection mechanism. The tools have to override the resource dir to make sure
they use a consistent version of the builtin headers.
There is still logic in InitHeaderSearch that attemps to add the absolute includes for the
the C++ standard library, so we keep passing the -stdlib=libc++ from the driver to the frontend
via cc1 args to avoid breaking that. In the long run, we should move this logic to the driver too,
but it could potentially break the library detection on other systems, so we don't tackle it in this
patch to keep its scope manageable.
This is a second attempt to fix the issue, first one was commited in r346652 and reverted in r346675.
The original fix relied on an ad-hoc propagation (bypassing the cc1 flags) of the install dir from the
driver to the frontend's HeaderSearchOptions. Unsurpisingly, the propagation was incomplete, it broke
the libc++ detection in clang itself, which caused LLDB tests to break.
The LLDB tests pass with new fix.
Reviewers: JDevlieghere, arphaman, EricWF
Reviewed By: arphaman
Subscribers: mclow.lists, ldionne, dexonsmith, ioeric, christof, kadircet, cfe-commits
Differential Revision: https://reviews.llvm.org/D54630
llvm-svn: 348365
This is an updated version of the D54576, which was reverted.
Problem was that SplitDebugName calls the InputInfo::getFilename
which asserts if InputInfo given is not of type Filename:
const char *getFilename() const {
assert(isFilename() && "Invalid accessor.");
return Data.Filename;
}
At the same time at that point, it can be of type Nothing and
we need to use getBaseInput(), like original code did.
Differential revision: https://reviews.llvm.org/D55006
llvm-svn: 348352
We should have been checking that this state is consistent, but its
possible for it to be filled later, so it isn't really sound to check
it here anyways.
Fixes llvm.org/PR39742
llvm-svn: 348325
Add a static_assert checking that no type class is polymorphic.
People should use LLVM style RTTI instead.
Differential Revision: https://reviews.llvm.org/D55225
Reviewed By: aaron.ballman
llvm-svn: 348281
This reverts commit r348154 and follow-up commits r348211 and r3248213.
Reason: the original commit broke compiler-rt tests and a follow-up fix
(r348203) broke our integrate and was reverted.
llvm-svn: 348280
Add a static_assert checking that no statement/expression class
is polymorphic. People should use LLVM style RTTI instead.
Differential Revision: https://reviews.llvm.org/D55222
Reviewed By: aaron.ballman
llvm-svn: 348278
ArrayTypeTraitExpr is the only expression class which is polymorphic.
As far as I can tell this is completely pointless.
Differential Revision: https://reviews.llvm.org/D55221
Reviewed By: aaron.ballman
llvm-svn: 348276
Critical regions in NVPTX are the constructs, which, generally speaking,
are not supported by the NVPTX target. Instead we're using special
technique to handle the critical regions. Currently they are supported
only within the loop and all the threads in the loop must execute the
same critical region.
Inside of this special regions the regions still must be emitted as
critical, to avoid possible data races between the teams +
synchronization must use __kmpc_barrier functions.
llvm-svn: 348272
__kmpc_barrier runtime functions must be marked as convergent to prevent
some dangerous optimizations. Also, for NVPTX target all barriers must
be emitted as simple barriers.
llvm-svn: 348271
When debugging a boost build with a modified
version of Clang, I discovered that the PTH implementation
stores TokenKind in 8 bits. However, we currently have 368
TokenKinds.
The result is that the value gets truncated and the wrong token
gets picked up when including PTH files. It seems that this will
go wrong every time someone uses a token that uses the 9th bit.
Upon asking on IRC, it was brought up that this was a highly
experimental features that was considered a failure. I discovered
via googling that BoostBuild (mostly Boost.Math) is the only user of
this
feature, using the CC1 flag directly. I believe that this can be
transferred over to normal PCH with minimal effort:
https://github.com/boostorg/build/issues/367
Based on advice on IRC and research showing that this is a nearly
completely unused feature, this patch removes it entirely.
Note: I considered leaving the build-flags in place and making them
emit an error/warning, however since I've basically identified and
warned the only user, it seemed better to just remove them.
Differential Revision: https://reviews.llvm.org/D54547
Change-Id: If32744275ef1f585357bd6c1c813d96973c4d8d9
llvm-svn: 348266
As of rev. 268898, clang supports __float128 on SystemZ. This seems to
have been in error. GCC has never supported __float128 on SystemZ,
since the "long double" type on the platform is already IEEE-128. (GCC
only supports __float128 on platforms where "long double" is some other
data type.)
For compatibility reasons this patch removes __float128 on SystemZ
again. The test case is updated accordingly.
llvm-svn: 348247
Previously, the iterator range checker only warned upon dereferencing of
iterators outside their valid range as well as increments and decrements of
out-of-range iterators where the result remains out-of-range. However, the C++
standard is more strict than this: decrementing begin() or incrementing end()
results in undefined behaviour even if the iterator is not dereferenced
afterwards. Coming back to the range once out-of-range is also undefined.
This patch corrects the behaviour of the iterator range checker: warnings are
given for any operation whose result is ahead of begin() or past the end()
(which is the past-end iterator itself, thus now we are speaking of past
past-the-end).
Differential Revision: https://reviews.llvm.org/D53812
llvm-svn: 348245
If an iterator is represented by a derived C++ class but its comparison operator
is for its base the iterator checkers cannot recognize the iterators compared.
This results in false positives in very straightforward cases (range error when
dereferencing an iterator after disclosing that it is equal to the past-the-end
iterator).
To overcome this problem we always use the region of the topmost base class for
iterators stored in a region. A new method called getMostDerivedObjectRegion()
was added to the MemRegion class to get this region.
Differential Revision: https://reviews.llvm.org/D54466
llvm-svn: 348244
Summary:
In our codebase, `static_assert(std::some_type_trait<Ts...>::value, "msg")`
(where `some_type_trait` is an std type_trait and `Ts...` is the
appropriate template parameters) account for 11.2% of the `static_assert`s.
In these cases, the `Ts` are typically not spelled out explicitly, e.g.
`static_assert(std::is_same<SomeT::TypeT, typename SomeDependentT::value_type>::value, "message");`
The diagnostic when the assert fails is typically not very useful, e.g.
`static_assert failed due to requirement 'std::is_same<SomeT::TypeT, typename SomeDependentT::value_type>::value' "message"`
This change makes the diagnostic spell out the types explicitly , e.g.
`static_assert failed due to requirement 'std::is_same<int, float>::value' "message"`
See tests for more examples.
After this is submitted, I intend to handle
`static_assert(!std::some_type_trait<Ts...>::value, "msg")`,
which is another 6.6% of static_asserts.
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D54903
llvm-svn: 348239
Includes "resize" and "shrink" because they can reset the object to a known
state in certain circumstances.
Differential Revision: https://reviews.llvm.org/D54563
llvm-svn: 348235
When the global new and delete operators aren't declared, Clang
provides and implicit declaration, but this declaration currently
always uses the default visibility. This is a problem when the
C++ library itself is being built with non-default visibility because
the implicit declaration will force the new and delete operators to
have the default visibility unlike the rest of the library.
The existing workaround is to use assembly to enforce the visiblity:
https://fuchsia.googlesource.com/zircon/+/master/system/ulib/zxcpp/new.cpp#108
but that solution is not always available, e.g. in the case of of
libFuzzer which is using an internal version of libc++ that's also built
with -fvisibility=hidden where the existing behavior is causing issues.
This change introduces a new option -fvisibility-global-new-delete-hidden
which makes the implicit declaration of the global new and delete
operators hidden.
Differential Revision: https://reviews.llvm.org/D53787
llvm-svn: 348234
headers.
Previously, we would only check whether the new declaration is in a
system header, but that requires the user to be able to correctly guess
whether a declaration in a system header is declared as a struct or a
class when specializing standard library traits templates.
We now entirely ignore declarations for which the warning was disabled
when determining whether to warn on a tag mismatch.
Also extend the diagnostic message to clarify that
a) code containing such a tag mismatch is in fact valid and correct,
and
b) the (non-coding-style) reason to emit such a warning is that the
Microsoft C++ ABI is broken and includes the tag kind in decorated
names,
as it seems a lot of users are confused by our diagnostic here (either
not understanding why we produce it, or believing that it represents an
actual language rule).
llvm-svn: 348233
The warning piece traditionally describes the bug itself, i.e.
"The bug is a _____", eg. "Attempt to delete released memory",
"Resource leak", "Method call on a moved-from object".
Event pieces produced by the visitor are usually in a present tense, i.e.
"At this moment _____": "Memory is released", "File is closed",
"Object is moved".
Additionally, type information is added into the event pieces for STL objects
(in order to highlight that it is in fact an STL object), and the respective
event piece now mentions that the object is left in an unspecified state
after it was moved, which is a vital piece of information to understand the bug.
Differential Revision: https://reviews.llvm.org/D54560
llvm-svn: 348229
Downstream forks that have their own attributes often run into this
test failing when a new attribute is added to clang because the
number of supported attributes no longer match. This is redundant
information for this test, so we can get by without it.
rdar://46288577
llvm-svn: 348218
In general case there use-after-move is not a bug. It depends on how the
move-constructor or move-assignment is implemented.
In STL, the convention that applies to most classes is that the move-constructor
(-assignment) leaves an object in a "valid but unspecified" state. Using such
object without resetting it to a known state first is likely a bug. Objects
Local value-type variables are special because due to their automatic lifetime
there is no intention to reuse space. If you want a fresh object, you might
as well make a new variable, no need to move from a variable and than re-use it.
Therefore, it is not always a bug, but it is obviously easy to suppress when it
isn't, and in most cases it indeed is - as there's no valid intention behind
the intentional use of a local after move.
This applies not only to local variables but also to parameter variables,
not only of value type but also of rvalue reference type (but not to lvalue
references).
Differential Revision: https://reviews.llvm.org/D54557
llvm-svn: 348210
The checker had extra code to clean up memory regions that were sticking around
in the checker without ever being cleaned up due to the bug that was fixed in
r347953. Because of that, if a region was moved from, then became dead,
and then reincarnated, there were false positives.
Why regions are even allowed to reincarnate is a separate story. Luckily, this
only happens for local regions that don't produce symbols when loaded from.
No functional change intended. The newly added test demonstrates that even
though no cleanup is necessary upon destructor calls, the early return
cannot be removed. It was not failing before the patch.
Differential Revision: https://reviews.llvm.org/D54372
llvm-svn: 348208
This follows the Static Analyzer's tradition to name checkers after
things in which they find bugs, not after bugs they find.
Differential Revision: https://reviews.llvm.org/D54556
llvm-svn: 348201
This continues the work that was started in r342313, which now gets applied to
object-under-construction tracking in C++. Makes it possible to debug
temporaries by dumping exploded graphs again.
Differential Revision: https://reviews.llvm.org/D54459
llvm-svn: 348200
This continues the work started in r342309 and r342315 to provide identifiers
to AST objects that are shorter and easier to read and remember than pointers.
Differential Revision: https://reviews.llvm.org/D54457
llvm-svn: 348198
Buildbot failures were caused by an unrelated UB that was introduced in r347943
and fixed in r347970.
Also the revision was incorrectly specified as r344580 during revert.
Differential Revision: https://reviews.llvm.org/D54017
llvm-svn: 348188
Make sure that symbols needed to implement runtime support for gcov are
exported when using an export list on Darwin.
Without the clang driver exporting these symbols, the linker hides them,
resulting in tapi verification failures.
rdar://45944768
Differential Revision: https://reviews.llvm.org/D55151
llvm-svn: 348187
Workaround naming and hierarchy changes in BaseHTTPServer and SimpleHTTPServer module.
Differential Revision: https://reviews.llvm.org/D55203
llvm-svn: 348184
Python2 supports both backticks and `repr` to access the __repr__ slot. Python3 only supports `repr`.
Differential Revision: https://reviews.llvm.org/D55201
llvm-svn: 348182
As discussed on llvm-dev recently, Clang currently emits redundant
directories in DIFile entries, such as
.file 1 "/Volumes/Data/llvm" "/Volumes/Data/llvm/tools/clang/test/CodeGen/debug-info-abspath.c"
This patch looks at any common prefix between the compilation
directory and the (absolute) file path and strips the redundant
part. More importantly it leaves the compilation directory empty if
the two paths have no common prefix.
After this patch the above entry is (assuming a compilation dir of "/Volumes/Data/llvm/_build"):
.file 1 "/Volumes/Data/llvm" "tools/clang/test/CodeGen/debug-info-abspath.c"
When building the FileCheck binary with debug info, this patch makes
the build artifacts ~1kb smaller.
Differential Revision: https://reviews.llvm.org/D55085
llvm-svn: 348154
Remove the pointless "+ 0" which I added for some reason when
modifying these statement/expression classes since it looks
like this is a typo. Following the suggestion of aaron.ballman
in D54902. NFC.
llvm-svn: 348150
CallExpr::setNumArgs is the only thing that prevents storing the arguments
in a trailing array. There is only 3 places in Sema where setNumArgs is called.
D54900 dealt with one of them.
This patch remove the other two calls to setNumArgs in ConvertArgumentsForCall.
To do this we do the following changes:
1.) Replace the first call to setNumArgs by an assertion since we are moving the
responsability to allocate enough space for the arguments from
Sema::ConvertArgumentsForCall to its callers
(which are Sema::BuildCallToMemberFunction, and Sema::BuildResolvedCallExpr).
2.) Add a new member function CallExpr::shrinkNumArgs, which can only be used
to drop arguments and then replace the second call to setNumArgs by
shrinkNumArgs.
3.) Add a new defaulted parameter MinNumArgs to CallExpr and its derived
classes which specifies a minimum number of argument slots to allocate.
The actual number of arguments slots allocated will be
max(number of args, MinNumArgs) with the extra args nulled. Note that
after the creation of the call expression all of the arguments will be
non-null. It is just during the creation of the call expression that some of
the last arguments can be temporarily null, until filled by default arguments.
4.) Update Sema::BuildCallToMemberFunction by passing the number of parameters
in the function prototype to the constructor of CXXMemberCallExpr. Here the
change is pretty straightforward.
5.) Update Sema::BuildResolvedCallExpr. Here the change is more complicated
since the type-checking for the function type was done after the creation of
the call expression. We need to move this before the creation of the call
expression, and then pass the number of parameters in the function prototype
(if any) to the constructor of the call expression.
6.) Update the deserialization of CallExpr and its derived classes.
Differential Revision: https://reviews.llvm.org/D54902
Reviewed By: aaron.ballman
llvm-svn: 348145
Summary:
SSBS (Speculative Store Bypass Safe) is only mandatory from 8.5
onwards but is optional from Armv8.0-A. This patch adds testing for
the ssbs command line option, added to allow enabling the feature
in previous Armv8-A architectures to 8.5.
Reviewers: olista01, samparker, aemerson
Reviewed By: samparker
Subscribers: javed.absar, kristof.beyls, cfe-commits
Differential Revision: https://reviews.llvm.org/D54961
llvm-svn: 348142
CallExpr::setNumArgs is the only thing that prevents storing the arguments
of a call expression in a trailing array since it might resize the argument
array. setNumArgs is only called in 3 places in Sema, and for all of them it
is possible to avoid it.
This deals with the call to setNumArgs in BuildCallToObjectOfClassType.
Instead of constructing the CXXOperatorCallExpr first and later calling
setNumArgs if we have default arguments, we first construct a large
enough SmallVector, do the promotion/check of the arguments, and
then construct the CXXOperatorCallExpr.
Incidentally this also avoid reallocating the arguments when the
call operator has default arguments but this is not the primary goal.
Differential Revision: https://reviews.llvm.org/D54900
Reviewed By: aaron.ballman
llvm-svn: 348134
Have all classes derive from object: that's implicitly the default in Python3,
it needs to be done explicilty in Python2.
Differential Revision: https://reviews.llvm.org/D55121
llvm-svn: 348127
Python2 supports the two following equivalent construct
raise ExceptionType, exception_value
and
raise ExceptionType(exception_value)
Only the later is supported by Python3.
Differential Revision: https://reviews.llvm.org/D55195
llvm-svn: 348126
Summary:
This is a follow-up on https://reviews.llvm.org/D52879, addressing a few issues.
This:
- adds a FIXME for later improvement for specific builtins: I previously have only checked OpenCL ones and ensured tests cover those.
- fixed the CallExpr type.
Reviewers: riccibruno
Reviewed By: riccibruno
Subscribers: yaxunl, Anastasia, kristina, svenvh, cfe-commits
Differential Revision: https://reviews.llvm.org/D55136
llvm-svn: 348120
Summary:
LLDB.framework wants a copy these headers. With this change LLDB can easily glob for the list of files:
```
get_target_property(clang_include_dir clang-headers RUNTIME_OUTPUT_DIRECTORY)
file(GLOB_RECURSE clang_vendor_headers RELATIVE ${clang_include_dir} "${clang_include_dir}/*")
```
By default `RUNTIME_OUTPUT_DIRECTORY` is unset for custom targets like `clang-headers`.
Reviewers: aprantl, JDevlieghere, davide, friss, dexonsmith
Reviewed By: JDevlieghere
Subscribers: mgorny, #lldb, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D55128
llvm-svn: 348116
Summary:
This has precedent in the StmtVisitor. This change will make it
possible to clean up the comment handling in ASTDumper.
Reviewers: aaron.ballman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55069
llvm-svn: 348100
The vector modifier is considered separate, so
don't treat it as a conversion specifier.
This is still not warning on some cases, like
using a type that isn't a valid vector element.
Fixes bug 39652
llvm-svn: 348084
The spec is ambiguous on whether vector types are allowed to be
implicitly converted. The only legal context I think this can
be used for OpenCL is printf, where it seems necessary.
llvm-svn: 348083
The two LLVM_DUMP_METHOD methods have a undefined reference on clang::DiagnosticsEngine::DiagStateMap::dump.
tools/clang/tools/extra/clangd/benchmarks/IndexBenchmark links in
clangDaemon but does not link in clangBasic explicitly, which causes a
linker error "undefined symbol" in !NDEBUG + -DBUILD_SHARED_LIBS=on builds.
Move LLVM_DUMP_METHOD methods to .cpp to fix IndexBenchmark. They should
be unconditionally defined as they are also used by non-dump-method #pragma clang __debug diag_mapping
llvm-svn: 348065
This adds a callback to PrintingPolicy to allow CGDebugInfo to remap
file paths according to -fdebug-prefix-map. Otherwise the debug info
(particularly function names for C++ lambdas) may contain paths that
should have been remapped in the debug info.
<rdar://problem/46128056>
Differential Revision: https://reviews.llvm.org/D55137
llvm-svn: 348060
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039