In PPCISelLowering.cpp: PPCTargetLowering::LowerBUILD_VECTOR(), there
is an optimization for certain patterns to generate one or two vector
splats followed by a vector add or subtract. This operation is
represented by a VADD_SPLAT in the selection DAG. Prior to this
patch, it was possible for the VADD_SPLAT to be assigned the wrong
data type, causing incorrect code generation. This patch corrects the
problem.
Specifically, the code previously assigned the value type of the
BUILD_VECTOR node to the newly generated VADD_SPLAT node. This is
correct much of the time, but not always. The problem is that the
call to isConstantSplat() may return a SplatBitSize that is not the
same as the number of bits in the original element vector type. The
correct type to assign is a vector type with the same element bit size
as SplatBitSize.
The included test case shows an example of this, where the
BUILD_VECTOR node has a type of v16i8. The vector to be built is {0,
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16}. isConstantSplat
detects that we can generate a splat of 16 for type v8i16, which is
the type we must assign to the VADD_SPLAT node. If we do not, we
generate a vspltisb of 8 and a vaddubm, which generates the incorrect
result {16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16}. The correct code generation is a vspltish of 8 and a vadduhm.
This patch also corrected code generation for
CodeGen/PowerPC/2008-07-10-SplatMiscompile.ll, which had been marked
as an XFAIL, so we can remove the XFAIL from the test case.
llvm-svn: 209662
This required disabling a PowerPC optimization that did the following:
input:
x = BUILD_VECTOR <i32 16, i32 16, i32 16, i32 16>
lowered to:
tmp = BUILD_VECTOR <i32 8, i32 8, i32 8, i32 8>
x = ADD tmp, tmp
The add now gets folded immediately and we're back at the BUILD_VECTOR we
started from. I don't see a way to fix this currently so I left it disabled
for now.
Fix some trivially foldable X86 tests too.
llvm-svn: 174325