Target::Install() was assuming the module at index 0 was the executable.
This is often true, but not guaranteed to be the case. The
TestInferiorChanged.py test highlighted this when run against iOS.
After the binary is replaced in the middle of the test, it becomes the
last module in the list. The rest of the Target::Install() logic then
clobbers the executable file by using whatever happens to be the first
module in the target module list.
This change also marks the TestInferiorChanged.py test as a no-debug-info
test.
llvm-svn: 273960
explicit in how it adds the kernel binary, to guard against the
case where a kernel corefile might incorrectly include the kernel's
UUID in it (so calling ::GetSharedModule may end up returning the
global module cache's copy of the core file instead of adding the
kerenl binary).
<rdar://problem/26988816>
llvm-svn: 273954
We were checking for integer types only before this. So I added the ability for CompilerType objects to check for integer and enum types.
Then I searched for places that were using the CompilerType::IsIntegerType(...) function. Many of these places also wanted to be checking for enumeration types as well, so I have fixed those places. These are in the ABI plug-ins where we are figuring out which arguments would go in where in regisers/stack when making a function call, or determining where the return value would live. The real fix for this is to use clang to compiler a CGFunctionInfo and then modify the code to be able to take the IR and a calling convention and have the backend answer the questions correctly for us so we don't need to create a really bad copy of the ABI in each plug-in, but that is beyond the scope of this bug fix.
Also added a test case to ensure this doesn't regress in the future.
llvm-svn: 273750
This:
a) teaches PythonCallable to look inside a callable object
b) teaches PythonCallable to discover whether a callable method is bound
c) teaches lldb.command to dispatch to either the older 4 argument version or the newer 5 argument version
llvm-svn: 273640
Summary:
This adds new SB API calls and classes to allow a user of the SB API to obtain a full list of memory regions accessible within the process. Adding this to the API makes it possible use the API for tasks like scanning memory for blocks allocated with a header and footer to track down memory leaks, otherwise just inspecting every address is impractical especially for 64 bit processes.
These changes only add the API itself and a base implementation of GetMemoryRegions() to lldb_private::Process::GetMemoryRegions.
I will submit separate patches to fill in lldb_private::Process::GetMemoryRegionInfoList and GetMemoryRegionInfo for individual platforms.
The original discussion about this is here:
http://lists.llvm.org/pipermail/lldb-dev/2016-May/010203.html
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20565
llvm-svn: 273547
for TestNamespaceLookup.py; didn't see anything obviously wrong so I'll
need to look at this more closely before re-committing. (passed OK on
macOS ;)
llvm-svn: 273531
There's uses of "macosx" that will be more tricky to
change, like in triples (e.g. "x86_64-apple-macosx10.11") -
for now I'm just updating source comments and strings printed
for humans.
llvm-svn: 273524
In Address.cpp, we were asking for the lldb::eSymbolContextVariable to be resolved, yet we weren't using the variable. This code gets called when disassembling and can cause the manual creation of all global variables variables which can take minutes. Removing eSymbolContextVariable allows disassembly to not create these long pauses.
In Module.cpp, if someone only specified the lldb::eSymbolContextVariable flag, we would not look into a module's debug info, now we will.
<rdar://problem/26907449>
llvm-svn: 273307
This patch allows LLDB for AArch64 to watch all bytes, words or double words individually on non 8-byte alligned addresses.
This patch also adds tests to verify this functionality.
Differential revision: http://reviews.llvm.org/D21280
llvm-svn: 272916
During expression evaluation, the ClangExpressionParser preforms a
number of hard-coded fixups on the expression's IR before the module
is assembled and dispatched to be run in a ThreadPlan.
This patch allows the runtimes to register LLVM passes to be run over the
generated IR, that they may perform language or architecture-specfic fixups
or analyses over the generated expression.
This makes expression evaluation for plugins more flexible and allows
language-specific fixes to reside in their own module, rather than
littering the expression evaluator itself with language-specific fixes.
llvm-svn: 272800
Summary:
This removes the last usage of the Platform plugin in NPL. It was being
used for determining the architecture of the debugged process. I replace
the call that went through the Platform plugin with a lower level call
on the ObjectFile directly.
Reviewers: tberghammer
Subscribers: uweigand, nitesh.jain, omjavaid, lldb-commits
Differential Revision: http://reviews.llvm.org/D21324
llvm-svn: 272686
This patch fixes various races between the time the private state thread is signaled to exit and the time it actually exits (during which it no longer responds to events). Previously, this was consistently causing 2-second timeout delays on process detach/stop for us.
This also prevents crashes that were caused by the thread controlling its own owning pointer while the controller was using it (copying the thread wrapper is not enough to mitigate this, since the internal thread object was getting reset anyway). Again, we were seeing this consistently.
Differential Revision: http://reviews.llvm.org/D21296
llvm-svn: 272682
PlatformRemoteAppleTV to check the target.exec-search-paths
directories for files after looking in the SDK. An additional
wrinkle is that the remote file path may be something like
".../UIFoundation.framework/UIFoundation" and in
target.exec-search-paths we will have "UIFoundation.framework".
Looking for just the filename of the path is not sufficient -
we need to also look for it by the parent directories because
this may be a darwin bundle/framework like the UIFoundation
example.
We really need to make a PlatformRemoteAppleDevice and have
PlatformRemoteiOS, PlatformRemoteAppleWatch, and PlatformRemoteAppleTV
inherit from it. These three classes are 98% identical code.
<rdar://problem/25976619>
llvm-svn: 272635
Prior to this we would display the typename for "TestObj<-1>" as "TestObj<4294967295>" when we showed the type. Expression parsing could also fail because we would fail to find the mangled name when evaluating expressions.
The issue was we were losing the signed'ness of the template integer parameter in DWARFASTParserClang.cpp.
<rdar://problem/25577041>
llvm-svn: 272434
For some reason, the conversion to taking the target lock when acquiring
the ExecutionContext was only done for some of the functions here. That was
allowing lock inversion in some complex uses.
<rdar://problem/26705635>
llvm-svn: 272354
For code like:
int g_global = 234;
int g_static = 345;
int main(int argc, char **argv)
{
int a = 22333;
static int g_int = 123;
return g_global + g_static + g_int + a;
}
If we stop at the "return" statement, we expect to see "argc", "argv", "a" and "g_int" when we type "frame variable" since "g_int" is a locally defined static variable, but we don't expect to see "g_global" or "g_static" unless we add the -g option to "frame variable".
llvm-svn: 272348
Address Size File off File size
---------- ---------- ---------- ----------
LC_SEGMENT 0x000f6000 0x00001000 0x1d509ee8 0x00001000 --- --- 0 0x00000000 __TEXT
LC_SEGMENT 0x0f600000 0x00100000 0x1d50aee8 0x00100000 --- --- 0 0x00000000 __TEXT
LC_SEGMENT 0x000f7000 0x00001000 0x1d60aee8 0x00001000 --- --- 0 0x00000000 __TEXT
Any if the user executes the following command:
(lldb) mem read 0xf6ff0
We would attempt to read 32 bytes from 0xf6ff0 but would only get 16 unless we loop through consecutive memory ranges that are contiguous in the address space, but not in the file data.
This fixes the ProcessMachCore::DoReadMemory() to do the right thing.
<rdar://problem/19729287>
llvm-svn: 272322
Previously we eliminated the randomized scheme for finding memory when the
underlying process cannot allocate memory, and replaced it with an algorithm
that starts the allocations at 00x.
This was more determinstic, but runs into problems on embedded targets where the
pages near 0x0 are in fact interesting memory. To deal with those cases, this
patch does two things:
- It makes the default fallback be an address that is less likely than 0x0 to
contain interesting information.
- Before falling back to this, it adds an algorithm that consults the
GetMemoryRegionInfo() API to see if it can find an unmapped area.
This should eliminate the randomness (and unpredictable memory accesseas) of the
previous scheme while making expressions more likely to return correct results.
<rdar://problem/25545573>
llvm-svn: 272301
In order to make this happen, I have added permissions to sections so that we can know what the permissions are for a given section, and modified both core file plug-ins to override Process::GetMemoryRegionInfo() and answer things correctly.
llvm-svn: 272276
IsPointedCString has problems with ValueObjects of type eTypeHostAddress. We should
figure out the right thing to do in that case, but the test is silly here because we're
reading a type we've defined, so we know it is a const char *, and if the memory is good,
we won't be able to read any characters, when we do ReadPointedString.
<rdar://problem/26612812>
llvm-svn: 272087
Rules are as follows for internal code using lldb::DisassemblerSP and lldb::InstructionSP:
1 - The disassembler needs to stay around as long as instructions do as the Instruction subclass now has a weak pointer to the disassembler
2 - The public API has been fixed so that if you get a SBInstruction, it will hold onto a strong reference to the disassembler in a new InstructionImpl class
This will keep code like like:
inst = lldb.target.ReadInstructions(frame.GetPCAddress(), 1).GetInstructionAtIndex(0)
inst.GetMnemonic()
Working as expected (not the SBInstructionList() that was returned by SBTarget.ReadInstructions() is gone, but "inst" has a strong reference inside of it to the disassembler and the instruction.
All code inside the LLDB shared library was verified to correctly hold onto the disassembler instance in all places.
<rdar://problem/24585496>
llvm-svn: 272069
Summary:
In the case of client sockets, we are not binding to a specific port, so we
should be able to just request a new one. Disregarding refactors, this code
has been here since the initial LLDB checkin, so I was unable to figure out
whether it was added as a fix for a specific problem, or just for symmetry
with server sockets, but I see no side-effect from removing it now. I was
still able to create 10000 connections within a couple of seconds, so I think
it's unlikely we will exhaust the port space (previously, I would get an
error after a couple thousand connections).
This fixes an occasional issue with connecting to the android debug bridge
deamon on OSX when running the test suite, which would occasionaly fail with
EADDRINUSE. My best guess is that this was happening because two processes
were assigned the same client port number, and then things blew up because
they were both trying to connect to the same ADB server port. I have not
observed this issue happening on Linux or Windows.
Reviewers: clayborg
Subscribers: tberghammer, danalbert, lldb-commits
Differential Revision: http://reviews.llvm.org/D21088
llvm-svn: 272041
When USE_SETUPTERM_WORKAROUND is enabled, we were calling setupterm() multiple times and leaking memory on each subsequent call. This is now fixed by calling setupterm() once in the constructor and tracking if we have already setup a terminal for a file descriptor.
Calls to "el_set (m_editline, EL_ADDFN, ..." were leaking memory. If we switch over to call el_wset with wide strings when LLDB_EDITLINE_USE_WCHAR is set, then we no longer leak memory each time we construct a new Editline object.
The calls to "el_set (m_editline, EL_ADDFN, ..." were changed over to call "el_wset (m_editline, EL_ADDFN, ...". Note that when LLDB_EDITLINE_USE_WCHAR is not defined, then el_wset is #define'ed to el_set. All strings are wrapped in EditLineConstString which will use wide strings when needed, and normal C strings when LLDB_EDITLINE_USE_WCHAR is not defined.
<rdar://problem/26677627>
llvm-svn: 272036
as an asynchronous unwind plan source.
Two small fixes to the compact unwind dumper tool for
armv7 encodings.
A change to DWARFCallFrameInfo to strip the 0th bit on
addresses in eh_frame sections when armv7. In the
clang generated examples I have, the 0th bit is set for
thumb functions and that's causing the unwinder to pick
the wrong function for eh_frame info.
llvm-svn: 271970
Summary:
Because PIE executables have an e_type of llvm::ELF::ET_DYN,
they are not of type eTypeExecutable, and were being removed
when svr4 packets were used.
Reviewers: clayborg, ADodds, tfiala, sas
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20990
llvm-svn: 271899
return NULL for an invalid register.
The unwind logic asks for the "return address register" which doesn't exist
on x86/x86_64, returns -1 and calls this with -1 as a parameter, ends up
out of scope of the array bounds for g_register_infos and later SIGSEGVs
on accessing. This now matches the other GetRegisterInfoAtIndex for
other platforms.
llvm-svn: 271876
Summary:
Without this commit, when `log enable lldb expr` is enabled, the
disassembly of JIT'ed code is never displayed.
Reviewers: spyffe, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20312
llvm-svn: 271863
Some compilers do not mark up C++ functions as extern "C" in the DWARF, so LLDB
has to fall back (if it is about to give up finding a symbol) to using the base
name of the function.
This fix also ensures that we search by full name rather than "auto," which
could cause unrelated C++ names to be found. Finally, it adds a test case.
<rdar://problem/25094302>
llvm-svn: 271551