The current implementation of ShuffleVectorOp assumes all vectors are
scalable. LLVM IR allows shufflevector operations on scalable vectors,
and the current translation between LLVM Dialect and LLVM IR does the
rigth thing when the shuffle mask is all zeroes. This is required to
do a splat operation on a scalable vector, but it doesn't make sense
for scalable vectors outside of that operation, i.e.: with non-all zero
masks.
Differential Revision: https://reviews.llvm.org/D118371
This patch removes the following clauses from OpenMP Dialect:
- private
- firstprivate
- lastprivate
- shared
- default
- copyin
- copyprivate
The privatization clauses are being handled in the flang frontend. The
data copying clauses are not being handled anywhere for now. Once
we have a better picture of how to handle these clauses in OpenMP
Dialect, we can add these. For the time being, removing unneeded
clauses.
For detailed discussion about this refer to [[ https://discourse.llvm.org/t/rfc-privatisation-in-openmp-dialect/3526 | Privatisation in OpenMP dialect ]]
Reviewed By: kiranchandramohan, clementval
Differential Revision: https://reviews.llvm.org/D120029
This change is needed when lowering alloca()-using code on targets
such as ROCDL that represent private scratch space as a separate
address space.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D119775
Also, it seems Khronos has changed html spec format so small adjustment to script was needed.
Base op parsing is also probably broken.
Differential Revision: https://reviews.llvm.org/D119678
Adds a pointer type to EmitC. The emission of pointers is so far only
possible by using the `emitc.opaque` type
Co-authored-by: Simon Camphausen <simon.camphausen@iml.fraunhofer.de>
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D119337
This patch simply adds an optional garbage collector attribute to LLVMFuncOp which maps 1:1 to the "gc" property of functions in LLVM.
Differential Revision: https://reviews.llvm.org/D119492
Stop the Cpp target from emitting unused labels. The previosly generated
code generated warning if `-Wunused-label` is passed to a compiler.
Co-authored-by: Simon Camphausen <simon.camphausen@iml.fraunhofer.de>
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D118154
The chunk size in schedule clause is one integer expression, which can
be either constant integer or integer variable. Fix schedule clause in
MLIR Op Def to support integer expression with different bit width.
Reviewed By: shraiysh
Differential Revision: https://reviews.llvm.org/D116073
The leading space that is always printed at the beginning of regions is not consistent with other parts of the printing API. Moreover, this leading space can lead to undesirable assembly formats:
```
attr-dict-with-keyword $region
```
Prints as:
```
// Two spaces between `}` and `{`
attributes {foo} { ... }
```
Moreover, the leading space results in the odd generic op format:
```
"test.op"() ( {...}) : () -> ()
```
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D117411
The translation from the MLIR LLVM dialect to LLVM IR includes a mechanism that
ensures the successors of a block to be different blocks in case block
arguments are passed to them since the opposite cannot be expressed in LLVM IR.
This mechanism previously only worked for functions because it was written
prior to the introduction of other region-carrying operations such as the
OpenMP dialect, which also translates directly to LLVM IR. Modify this
mechanism to handle all regions in the module and not only functions.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D117548
LLVM dialect supports terminators with repeated successor blocks that take
different operands. This cannot be directly expressed in LLVM IR though since
it uses the number of the predecessor block to differentiate values in its PHI
nodes. Therefore, the translation to LLVM IR inserts dummy blocks to forward
arguments in case of repeated succesors with arguments. The insertion works
correctly. However, when connecting PHI nodes to their source values, the
assertion of the insertion having worked correctly was incorrect: it would only
trigger if repeated blocks were adjacent in the successor list (not guaranteed
by anything) and would not check if the successors have operands (no need for
dummy blocks in absence of operands since no PHIs are being created). Change
the assertion to only trigger in case of duplicate successors with operands,
and don't expect them to be adjacent.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D117214
OpenMP runtime requires depend vec with i64 type and the alignment of
store instruction should be set as 8.
Reviewed By: kiranchandramohan, shraiysh
Differential Revision: https://reviews.llvm.org/D116300
LLVM Dialect Constant Op translations assume that if the attribute is a
vector, it's a fixed length one, generating an invalid translation for
constant scalable vector initializations.
Differential Revision: https://reviews.llvm.org/D117125
This patch changes the syntax of omp.atomic.read to take the address of
destination, instead of having the value in a result. This will allow
using omp.atomic.read operation within an omp.atomic.capture operation
thus making its implementation less complex.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D116396
Recent commits added a possibility for indices in LLVM dialect GEP operations
to be supplied directly as constant attributes to ensure they remain such until
translation to LLVM IR happens. Make this required for indexing into LLVM
struct types to match LLVM IR requirements, otherwise the translation would
assert on constructing such IR.
For better compatibility with MLIR-style operation construction interface,
allow GEP operations to be constructed programmatically using Values pointing
to known constant operations as struct indices.
Depends On D116758
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D116759
In LLVM IR, the GEP indices that correspond to structures are required to be
i32 constants. MLIR models constants as just values defined by special
operations, and there is no verification that it is the case for structure
indices in GEP. Furthermore, some common transformations such as control flow
simplification may lead to the operands becoming non-constant. Make it possible
to directly supply constant values to LLVM GEPOp to guarantee they remain
constant until the translation to LLVM IR. This is not yet a requirement and
the verifier is not modified, this will be introduced separately.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D116757
This patch adds omp.atomic.write lowering to LLVM IR.
Also, changed the syntax to have equal symbol instead of the comma to
make it more intuitive.
Reviewed By: kiranchandramohan, peixin
Differential Revision: https://reviews.llvm.org/D116416
This patch allows the usage of the normalDestOperands and unwindDestOperands operands of llvm.invoke and have them be correctly mapped to phis in the successor when exported to LLVM IR.
Differential Revision: https://reviews.llvm.org/D116706
Exporting a llvm.landingpad operation with the cleanup flag set is currently ignored by the export code.
Differential Revision: https://reviews.llvm.org/D116565
The result value of a llvm.invoke operation is currently not mapped to the corresponding llvm::Value* when exporting to LLVM IR. This leads to any later operations using the result to crash as it receives a nullptr.
Differential Revision: https://reviews.llvm.org/D116564
MLIR already exposes landingpads, the invokeop and the personality function on LLVM functions. With this intrinsic it should be possible to implement exception handling via the exception handling mechanisms provided by the Itanium ABI.
Differential Revision: https://reviews.llvm.org/D116436
Ops for the signed counterparts "llvm.smin" and "llvm.smax" already exist. This patch adds the unsigned versions as well.
Differential Revision: https://reviews.llvm.org/D115796
This patch adds lowering from omp.sections and omp.section (simple lowering along with the nowait clause) to LLVM IR.
Tests for the same are also added.
Reviewed By: ftynse, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D115030
With VectorType supporting scalable dimensions, we don't need many of
the operations currently present in ArmSVE, like mask generation and
basic arithmetic instructions. Therefore, this patch also gets
rid of those.
Having built-in scalable vector support also simplifies the lowering of
scalable vector dialects down to LLVMIR.
Scalable dimensions are indicated with the scalable dimensions
between square brackets:
vector<[4]xf32>
Is a scalable vector of 4 single precission floating point elements.
More generally, a VectorType can have a set of fixed-length dimensions
followed by a set of scalable dimensions:
vector<2x[4x4]xf32>
Is a vector with 2 scalable 4x4 vectors of single precission floating
point elements.
The scale of the scalable dimensions can be obtained with the Vector
operation:
%vs = vector.vscale
This change is being discussed in the discourse RFC:
https://llvm.discourse.group/t/rfc-add-built-in-support-for-scalable-vector-types/4484
Differential Revision: https://reviews.llvm.org/D111819
While the default value for the amdgpu-flat-work-group-size attribute,
"1, 256", matches the defaults from Clang, some users of the ROCDL dialect,
namely Tensorflow, use larger workgroups, such as 1024. Therefore,
instead of hardcoding this value, we add a rocdl.max_flat_work_group_size
attribute that can be set on GPU kernels to override the default value.
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D115741
The previous "optimization" that tries to reuse existing block for
selection header block can be problematic for deserialization
because it effectively pulls in previous ops in the selection op's
enclosing block into the selection op's header. When deserializing,
those ops will be placed in the selection op's region. If any of
the previous ops has usage after the section op, it will break. That
is, the following IR cannot round trip:
```mlir
^bb:
%def = ...
spv.mlir.selection { ... }
%use = spv.SomeOp %def
```
This commit removes the "optimization" to always create new blocks
for the selection header.
Along the way, also made error reporting better in deserialization
by turning asserts into proper errors and add check of uses outside
of sinked structured control flow region blocks.
Reviewed By: Hardcode84
Differential Revision: https://reviews.llvm.org/D115582
If we have a `spv.mlir.selection` op nested in a `spv.mlir.loop`
op, when serializing the loop's block, we might need to jump
from the selection op's merge block, which might be different
than the immediate MLIR IR predecessor block. But we still need
to get the block argument from the MLIR IR predecessor block.
Also, if the `spv.mlir.selection` is in the `spv.mlir.loop`'s
header block, we need to make sure `OpLoopMerge` is emitted
in the current block before start processing the nested selection
op. Otherwise we'll see the LoopMerge in the wrong SPIR-V
basic block.
Reviewed By: Hardcode84
Differential Revision: https://reviews.llvm.org/D115560
Count leading/trailing zeros are an existing LLVM intrinsic. Added LLVM
support for the intrinsics with lowerings from the math dialect to LLVM
dialect.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D115206
This patch adds lowering from omp.atomic.read to LLVM IR along with the
memory ordering clause. Tests for the same are also added.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D115134
LLVM switchop currently only permits i32. Both LLVM IR and MLIR Standard switch permit other integer types leading to an illegal state when lowering an i8 switch from MLIR standard
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D113955
This reverts commit 94992670fc.
Build is broken with:
tools/mlir/include/mlir/Dialect/LLVMIR/LLVMOps.cpp.inc:23996:3: error: no matching function for call to 'printSwitchOpCases'
printSwitchOpCases(_odsPrinter, *this, getValue().getType(), getCaseValuesAttr(), getCaseDestinations(), getCaseOperands(), getCaseOperands().getTypes());
^~~~~~~~~~~~~~~~~~
LLVM switchop currently only permits i32. Both LLVM IR and MLIR Standard switch permit other integer types leading to an illegal state when lowering an i8 switch from MLIR standard
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D113955
wmma intrinsics have a large number of combinations, ideally we want to be able
to target all the different variants. To avoid a combinatorial explosion in the
number of mlir op we use attributes to represent the different variation of
load/store/mma ops. We also can generate with tablegen helpers to know which
combinations are available. Using this we can avoid having too hardcode a path
for specific shapes and can support more types.
This patch also adds boiler plates for tf32 op support.
Differential Revision: https://reviews.llvm.org/D112689
Add llvm.mlir.global_ctors and global_dtors ops and their translation
support to LLVM global_ctors/global_dtors global variables.
Differential Revision: https://reviews.llvm.org/D112524
Splitting the WsLoop tests they were getting harder to debug with the offsets over 100 for some of them.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D112407
Pass the modifiers from the Flang parser to FIR/MLIR workshare
loop operation.
Not yet supporting the SIMD modifier, which is a bit more work
than just adding it to the list of modifiers, so will go in a
separate patch.
This adds a new field to the WsLoopOp.
Also add test for dynamic WSLoop, checking that dynamic schedule calls
the init and next functions as expected.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D111053
This patch supports the ordered construct in OpenMP dialect following
Section 2.19.9 of the OpenMP 5.1 standard. Also lowering to LLVM IR
using OpenMP IRBduiler. Lowering to LLVM IR for ordered simd directive
is not supported yet since LLVM optimization passes do not support it
for now.
Reviewed By: kiranchandramohan, clementval, ftynse, shraiysh
Differential Revision: https://reviews.llvm.org/D110015
This patch supports the ordered construct in OpenMP dialect following
Section 2.19.9 of the OpenMP 5.1 standard. Also lowering to LLVM IR
using OpenMP IRBduiler. Lowering to LLVM IR for ordered simd directive
is not supported yet since LLVM optimization passes do not support it
for now.
Reviewed By: kiranchandramohan, clementval, ftynse, shraiysh
Differential Revision: https://reviews.llvm.org/D110015
According to the OpenMP 5.0 standard, names and hints of critical operation are
closely related. The following are the restrictions on them:
- Unless the effect is as if `hint(omp_sync_hint_none)` was specified, the
critical construct must specify a name.
- If the hint clause is specified, each of the critical constructs with the
same name must have a hint clause for which the hint-expression evaluates to
the same value.
These restrictions will be enforced by design if the hint expression is a part
of the `omp.critical.declare` operation.
- Any operation with no "name" will be considered to have
`hint(omp_sync_hint_none)`.
- All the operations with the same "name" will have the same hint value.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D112134
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
This patch is mainly to propogate location attribute from spv.GlobalVariable to llvm.mlir.global.
It also contains three small changes.
1. Remove the restriction on UniformConstant In SPIRVToLLVM.cpp;
2. Remove the errorCheck on relaxedPrecision when deserializering SPIR-V in Deserializer.cpp
3. In SPIRVOps.cpp, let ConstantOp take signedInteger too.
Co-authered: Alan Liu <alanliu.yf@gmail.com> and Xinyi Liu <xyliuhelen@gmail.com>
Reviewed by:antiagainst
Differential revision: https://reviews.llvm.org/D110207
Previously, the translation to LLVM IR would emit IR that directly uses
a scope metadata node in case only one scope was in use in alias.scopes
or noalias metadata. It should always be a list of scopes. The verifier
change in 8700f2bd36 enforced this and
broke the test. Fix the translation to always create a list of scopes
using a new metadata node, update and reenable the respective test.
Fixes PR51919.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110140
SparseElementsAttr currently does not perform any verfication on construction, with the only verification existing within the parser. This revision moves the parser verification to SparseElementsAttr, and also adds additional verification for when a sparse index is not valid.
Differential Revision: https://reviews.llvm.org/D109189
Make use of runtime extension for the second reference counter used in
structured data region. This extension is implemented in D106510 and D106509.
Differential Revision: https://reviews.llvm.org/D106517
Conversion to the LLVM dialect is being refactored to be more progressive and
is now performed as a series of independent passes converting different
dialects. These passes may produce `unrealized_conversion_cast` operations that
represent pending conversions between built-in and LLVM dialect types.
Historically, a more monolithic Standard-to-LLVM conversion pass did not need
these casts as all operations were converted in one shot. Previous refactorings
have led to the requirement of running the Standard-to-LLVM conversion pass to
clean up `unrealized_conversion_cast`s even though the IR had no standard
operations in it. The pass must have been also run the last among all to-LLVM
passes, in contradiction with the partial conversion logic. Additionally, the
way it was set up could produce invalid operations by removing casts between
LLVM and built-in types even when the consumer did not accept the uncasted
type, or could lead to cryptic conversion errors (recursive application of the
rewrite pattern on `unrealized_conversion_cast` as a means to indicate failure
to eliminate casts).
In fact, the need to eliminate A->B->A `unrealized_conversion_cast`s is not
specific to to-LLVM conversions and can be factored out into a separate type
reconciliation pass, which is achieved in this commit. While the cast operation
itself has a folder pattern, it is insufficient in most conversion passes as
the folder only applies to the second cast. Without complex legality setup in
the conversion target, the conversion infra will either consider the cast
operations valid and not fold them (a separate canonicalization would be
necessary to trigger the folding), or consider the first cast invalid upon
generation and stop with error. The pattern provided by the reconciliation pass
applies to the first cast operation instead. Furthermore, having a separate
pass makes it clear when `unrealized_conversion_cast`s could not have been
eliminated since it is the only reason why this pass can fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109507
This makes the IR more readable, in particular when this will be used on
the builtin func outside of the LLVM dialect.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D109209
The translation to LLVM IR used to construct sequential constants by recurring
down to individual elements, creating constant values for them, and wrapping
them into aggregate constants in post-order. This is highly inefficient for
large constants with known data such as DenseElementsAttr. Use LLVM's
ConstantData for the innermost dimension instead. LLVM does seem to support
data constants for nested sequential constants so the outer dimensions are
still handled recursively. Nevertheless, this speeds up the translation of
large constants with equal dimensions by up to 30x.
Users are advised to rewrite large constants to use flat types before
translating to LLVM IR if more efficiency in translation is necessary. This is
not done automatically as the translation is not aware of the expectations of
the overall compilation flow about type changes and indexing, in particular for
global constants with external linkage.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D109152
Add an operation omp.critical.declare to declare names/symbols of
critical sections. Named omp.critical operations should use symbols
declared by omp.critical.declare. Having a declare operation ensures
that the names of critical sections are global and unique. In the
lowering flow to LLVM IR, the OpenMP IRBuilder creates unique names
for critical sections.
Reviewed By: ftynse, jeanPerier
Differential Revision: https://reviews.llvm.org/D108713
This upstreams the Cpp emitter, initially presented with [1], from [2]
to MLIR core. Together with the previously upstreamed EmitC dialect [3],
the target allows to translate MLIR to C/C++.
[1] https://reviews.llvm.org/D76571
[2] https://github.com/iml130/mlir-emitc
[3] https://reviews.llvm.org/D103969
Co-authored-by: Jacques Pienaar <jpienaar@google.com>
Co-authored-by: Simon Camphausen <simon.camphausen@iml.fraunhofer.de>
Co-authored-by: Oliver Scherf <oliver.scherf@iml.fraunhofer.de>
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D104632
Use the recently introduced OpenMPIRBuilder facility to transate OpenMP
workshare loops with reductions to LLVM IR calling OpenMP runtime. Most of the
heavy lifting is done at the OpenMPIRBuilder. When other OpenMP dialect
constructs grow support for reductions, the translation can be updated to
operate on, e.g., an operation interface for all reduction containers instead
of workshare loops specifically. Designing such a generic translation for the
single operation that currently supports reductions is premature since we don't
know how the reduction modeling itself will be generalized.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107343
Introduces new Ops to represent 1. alias.scope metadata in LLVM, and 2. domains for these scopes. These correspond to the metadata described in https://llvm.org/docs/LangRef.html#noalias-and-alias-scope-metadata. Lists of scopes are modeled the same way as access groups - as an ArrayAttr on the Op (added in https://reviews.llvm.org/D97944).
Lowering 'noalias' attributes on function parameters is already supported. However, lowering `noalias` metadata on individual Ops is not, which is added in this change. LLVM uses the same keyword for these, but this change introduces a separate attribute name 'noalias_scopes' to represent this distinct concept.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D107870
This reverts the revert 28c04794df.
The failing MLIR test that caused the revert should be fixed in this
version.
Also includes a PPC test fix previously in 1f87c7c478.
This patch adds the critical construct to the OpenMP dialect. The
implementation models the definition in 2.17.1 of the OpenMP 5 standard.
A name and hint can be specified. The name is a global entity or has
external linkage, it is modelled as a FlatSymbolRefAttr. Hint is
modelled as an integer enum attribute.
Also lowering to LLVM IR using the OpenMP IRBuilder.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D107135
Use a modeling similar to SCF ParallelOp to support arbitrary parallel
reductions. The two main differences are: (1) reductions are named and declared
beforehand similarly to functions using a special op that provides the neutral
element, the reduction code and optionally the atomic reduction code; (2)
reductions go through memory instead because this is closer to the OpenMP
semantics.
See https://llvm.discourse.group/t/rfc-openmp-reduction-support/3367.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D105358
LLVM IR allows globals with external linkage to have initializers, including
undef. The translation was incorrectly using undef as a indicator that the
initializer should be ignored in translation, leading to the impossibility to
create an external global with an explicit undef initializer. Fix this and use
nullptr as a marker instead.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D105631
This patch brings support for setting runtime preemption specifiers of
LLVM's GlobalValues. In LLVM semantics, if the `dso_local` attribute
is not explicitly requested, then it is inferred based on linkage and
visibility. We model this same behavior with a UnitAttribute: if it is
present, then we explicitly request the GlobalValue to marked as
`dso_local`, otherwise we rely on the GlobalValue itself to make this
decision.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D104983
This adds Sdot2d op, which is similar to the usual Neon
intrinsic except that it takes 2d vector operands, reflecting the
structure of the arithmetic that it's performing: 4 separate
4-dimensional dot products, whence the vector<4x4xi8> shape.
This also adds a new pass, arm-neon-2d-to-intr, lowering
this new 2d op to the 1d intrinsic.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D102504
ArmSVE-specific memory operations are needed to generate end-to-end
code for as long as MLIR core doesn't support scalable vectors. This
instructions will be eventually unnecessary, for now they're required
for more complex testing.
Differential Revision: https://reviews.llvm.org/D103535
These `arm_sve.cmp` functions are needed to generate scalable vector
masks as long as scalable vectors are not part of the standard types.
Once in standard, these can be removed and `std.cmp` can be used
instead.
Differential Revision: https://reviews.llvm.org/D103473
These `arm_sve.cmp` functions are needed to generate scalable vector
masks as long as scalable vectors are not part of the standard types.
Once in standard, these can be removed and `std.cmp` can be used
instead.
Differential Revision: https://reviews.llvm.org/D103473
Add translation to LLVM IR for the UpdateOp with host and device operands.
Translation is done with call using the runtime. This is done in a similar way as
D101504 and D102381.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D102382
Translate ExitDataOp with delete and copyout operands to runtime call.
This is done in a similar way as D101504.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D102381
Support OpImageQuerySize in spirv dialect
co-authored-by: Alan Liu <alanliu.yf@gmail.com>
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D102029
This patch begins to translate acc.enter_data operation to call to tgt runtime call.
It currently only translate create/copyin operands of memref type. This acts as a basis to add support
for FIR types in the Flang/OpenACC support. It follows more or less a similar path than clang
with `omp target enter data map` directives.
This patch is taking a different approach than D100678 and perform a translation to LLVM IR
and make use of the OpenMPIRBuilder instead of doing a conversion to the LLVMIR dialect.
OpenACC support in Flang will rely on the current OpenMP runtime where 1:1 lowering can be
applied. Some extension will be added where features are not available yet.
Big part of this code will be shared for other standalone data operations in the OpenACC
dialect such as acc.exit_data and acc.update.
It is likely that parts of the lowering can also be shared later with the ops for
standalone data directives in the OpenMP dialect when they are introduced.
This is an initial translation and it probably needs more work.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D101504
First step in adding alignment as an attribute to MLIR global definitions. Alignment can be specified for global objects in LLVM IR. It can also be specified as a named attribute in the LLVMIR dialect of MLIR. However, this attribute has no standing and is discarded during translation from MLIR to LLVM IR. This patch does two things: First, it adds the attribute to the syntax of the llvm.mlir.global operation, and by doing this it also adds accessors and verifications. The syntax is "align=XX" (with XX being an integer), placed right after the value of the operation. Second, it allows transforming this operation to and from LLVM IR. It is checked whether the value is an integer power of 2.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101492
When using parallel loop construct, the OpenMP specification allows for
guided, auto and runtime as scheduling variants (as well as static and
dynamic which are already supported).
This adds the translation from MLIR to LLVM-IR for these scheduling
variants.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D101435
Previously, the OpenMP to LLVM IR conversion was setting the alloca insertion
point to the same position as the main compuation when converting OpenMP
`parallel` operations. This is problematic if, for example, the `parallel`
operation is placed inside a loop and would keep allocating on stack on each
iteration leading to stack overflow.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D101307