The MLIR parser allows regions to have an unnamed entry block.
Make this explicit in the language grammar.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D119950
Optional parameters with `defaultValue` set will be populated with that value if they aren't encountered during parsing. Moreover, parameters equal to their default values are elided when printing.
Depends on D118210
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D118544
Index attributes had no default value, which means the attribute values had to be set on the operation. This revision adds a default parameter to `IndexAttrDef`. After the change, every index attribute has to define a default value. For example, we may define the following strides attribute:
```
```
When using the operation the default stride is used if the strides attribute is not set. The mechanism is implemented using `DefaultValuedAttr`.
Additionally, the revision uses the naming index attribute instead of attribute more consistently, which is a preparation for follow up revisions that will introduce function attributes.
Depends On D119125
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D119126
Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to support rank polymorphism for a limited class of operations that access only scalars and tensors of rank zero. At operation instantiation time, it scales these scalar computations to multi-dimensional pointwise computations by replacing the empty indexing maps with identity index maps. The revision does not change the DSL itself, instead it adapts the Python emitter and the YAML generator to generate different indexing maps and and iterators depending on the rank of the first output.
Additionally, the revision introduces a `linalg.fill_tensor` operation that in a future revision shall replace the current handwritten `linalg.fill` operation. `linalg.fill_tensor` is thus only temporarily available and will be renamed to `linalg.fill`.
Reviewed By: nicolasvasilache, stellaraccident
Differential Revision: https://reviews.llvm.org/D119003
Implements optional attribute or type parameters, including support for such parameters in the assembly format `struct` directive. Also implements optional groups.
Depends on D117971
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D118208
Currently if an operation requires additional verification, it specifies an inline
code block (`let verifier = "blah"`). This is quite problematic for various reasons, e.g.
it requires defining C++ inside of Tablegen which is discouraged when possible, but mainly because
nearly all usages simply forward to a static function `static LogicalResult verify(SomeOp op)`.
This commit adds support for a `hasVerifier` bit field that specifies if an additional verifier
is needed, and when set to `1` declares a `LogicalResult verify()` method for operations to
override. For migration purposes, the existing behavior is untouched. Upstream usages will
be replaced in a followup to keep this patch focused on the hasVerifier implementation.
One main user facing change is that what was one `MyOp::verify` is now `MyOp::verifyInvariants`.
This better matches the name this method is called everywhere else, and also frees up `verify` for
the user defined additional verification. The `verify` function when generated now (for additional
verification) is private to the operation class, which should also help avoid accidental usages after
this switch.
Differential Revision: https://reviews.llvm.org/D118742
This matches the same API usage as attributes/ops/types. For example:
```c++
Dialect *dialect = ...;
// Instead of this:
if (auto *interface = dialect->getRegisteredInterface<DialectInlinerInterface>())
// You can do this:
if (auto *interface = dyn_cast<DialectInlinerInterface>(dialect))
```
Differential Revision: https://reviews.llvm.org/D117859
- Remove the `{Op,Attr,Type}Trait` TableGen classes and replace with `Trait`
- Rename `OpTraitList` to `TraitList` and use it in a few places
The bulk of this change is a mechanical s/OpTrait/Trait/ throughout the codebase.
Reviewed By: rriddle, jpienaar, herhut
Differential Revision: https://reviews.llvm.org/D118543
This reduces the dependencies of the MLIRVector target and makes the dialect consistent with other dialects.
Differential Revision: https://reviews.llvm.org/D118533
The bufferization of arith.constant ops is also switched over to BufferizableOpInterface-based bufferization. The old implementation is deleted. Both implementations utilize GlobalCreator, now renamed to just `getGlobalFor`.
GlobalCreator no longer maintains a set of all created allocations to avoid duplicate allocations of the same constant. Instead, `getGlobalFor` scans the module to see if there is already a global allocation with the same constant value.
For compatibility reasons, it is still possible to create a pass that bufferizes only `arith.constant`. This pass (createConstantBufferizePass) could be deleted once all users were switched over to One-Shot bufferization.
Differential Revision: https://reviews.llvm.org/D118483
This diff modifies the tablegen specification and code generation for
BitEnumAttr attributes in MLIR Operation Definition Specification (ODS) files.
Specifically:
- there is a new tablegen class for "none" values (i.e. no bits set)
- single-bit enum cases are specified via bit index (i.e. [0, 31]) instead of
the resulting enum integer value
- there is a new tablegen class to represent a "grouped" bitwise OR of other
enum values
This diff is intended as an initial step towards improving "fastmath"
optimization support in MLIR, to allow more precise control of whether certain
floating point optimizations are applied in MLIR passes. "Fast" math options
for floating point MLIR operations would (following subsequent RFC and
discussion) be specified by using the improved enum bit support in this diff.
For example, a "fast" enum value would act as an alias for a group of other
cases (e.g. finite-math-only, no-signed-zeros, etc.), in a way that is similar
to support in C/C++ compilers (clang, gcc).
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D117029
The LangRef currently lacks a top-level production, leaving the productions attribute-alias-def and type-alias-defunused. Clarify the situation by declaring what is to be parsed by an MLIR parser at the toplevel.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D117668
This commit refactors the FunctionLike trait into an interface (FunctionOpInterface).
FunctionLike as it is today is already a pseudo-interface, with many users checking the
presence of the trait and then manually into functionality implemented in the
function_like_impl namespace. By transitioning to an interface, these accesses are much
cleaner (ideally with no direct calls to the impl namespace outside of the implementation
of the derived function operations, e.g. for parsing/printing utilities).
I've tried to maintain as much compatability with the current state as possible, while
also trying to clean up as much of the cruft as possible. The general migration plan for
current users of FunctionLike is as follows:
* function_like_impl -> function_interface_impl
Realistically most user calls should remove references to functions within this namespace
outside of a vary narrow set (e.g. parsing/printing utilities). Calls to the attribute name
accessors should be migrated to the `FunctionOpInterface::` equivalent, most everything
else should be updated to be driven through an instance of the interface.
* OpTrait::FunctionLike -> FunctionOpInterface
`hasTrait` checks will need to be moved to isa, along with the other various Trait vs
Interface API differences.
* populateFunctionLikeTypeConversionPattern -> populateFunctionOpInterfaceTypeConversionPattern
Fixes#52917
Differential Revision: https://reviews.llvm.org/D117272
The only benefit of FunctionPass is that it filters out function
declarations. This isn't enough to justify carrying it around, as we can
simplify filter out declarations when necessary within the pass. We can
also explore with better scheduling primitives to filter out declarations
at the pipeline level in the future.
The definition of FunctionPass is left intact for now to allow time for downstream
users to migrate.
Differential Revision: https://reviews.llvm.org/D117182
This field allows for defining a code block that is placed in both the interface
and trait declarations. This is very useful when defining a set of utilities to
expose on both the Interface class and the derived attribute/operation/type.
In non-static methods, `$_attr`/`$_op`/`$_type` (depending on the type of
interface) may be used to refer to an instance of the IR entity. In the interface
declaration, this is an instance of the interface class. In the trait declaration,
this is an instance of the concrete entity class (e.g. `IntegerAttr`, `FuncOp`, etc.).
Differential Revision: https://reviews.llvm.org/D116961
This patch introduces a new directive that allow to parse/print attributes and types fully
qualified.
This is a follow-up to ee0908703d which introduces the eliding of the `!dialect.mnemonic` by default and allows to force to fully qualify each type/attribute
individually.
Differential Revision: https://reviews.llvm.org/D116905
The revision distinguishes `ReduceFn` and `ReduceFnUse`. The latter has the reduction dimensions attached while the former specifies the arithmetic function only. This separation allows us to adapt the reduction syntax a little bit and specify the reduction dimensions using square brackets (in contrast to the round brackets used for the values to reduce). It als is a preparation to add reduction function attributes to OpDSL. A reduction function attribute shall only specify the arithmetic function and not the reduction dimensions.
Example:
```
ReduceFn.max_unsigned(D.kh, D.kw)(...)
```
changes to:
```
ReduceFn.max_unsigned[D.kh, D.kw](...)
```
Depends On D115240
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D115241
The revision renames `PrimFn` to `ArithFn`. The name resembles the newly introduced arith dialect that implements most of the arithmetic functions. An exception are log/exp that are part of the math dialect.
Depends On D115239
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D115240
This revision introduces a the `TypeFn` class that similar to the `PrimFn` class contains an extensible set of type conversion functions. Having the same mechanism for both type conversion functions and arithmetic functions improves code consistency. Additionally, having an explicit function class and function name is a prerequisite to specify a conversion or arithmetic function via attribute. In a follow up commits, we will introduce function attributes to make OpDSL operations more generic. In particular, the goal is to handle signed and unsigned computation in one operations. Today, there is a linalg.matmul and a linalg.matmul_unsigned.
The commit implements the following changes:
- Introduce the class of type conversion functions `TypeFn`
- Replace the hardwired cast and cast_unsigned ops by the `TypeFn` counterparts
- Adapt the python and C++ code generation paths to support the new cast operations
Example:
```
cast(U, A[D.m, D.k])
```
changes to
```
TypeFn.cast(U, A[D.m, D.k])
```
Depends On D115237
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D115239
Renaming `AttributeDef` to `IndexAttrDef` prepares OpDSL to support different kinds of attributes and more closely reflects the purpose of the attribute.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115237
Extra definitions are placed in the generated source file for each op class. The substitution `$cppClass` is replaced by the op's C++ class name.
This is useful when declaring but not defining methods in TableGen base classes:
```
class BaseOp<string mnemonic>
: Op<MyDialect, mnemonic, [DeclareOpInterfaceMethods<SomeInterface>] {
let extraClassDeclaration = [{
// ZOp is declared at at the bottom of the file and is incomplete here
ZOp getParent();
}];
let extraClassDefinition = [{
int $cppClass::someInterfaceMethod() {
return someUtilityFunction(*this);
}
ZOp $cppClass::getParent() {
return dyn_cast<ZOp>(this->getParentOp());
}
}];
}
```
Certain things may prevent defining these functions inline, in the declaration. In this example, `ZOp` in the same dialect is incomplete at the function declaration because ops classes are declared in alphabetical order. Alternatively, functions may be too big to be desired as inlined, or they may require dependencies that create cyclic includes, or they may be calling a templated utility function that one may not want to expose in a header. If the functions are not inlined, then inheriting from the base class N times means that each function will need to be defined N times. With `extraClassDefinitions`, they only need to be defined once.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D115783
Fix confusing diagnostic during partial dialect conversion. A failure to
legalize is not the same as an operation being illegal: for eg. an
operation neither explicity marked legal nor explicitly marked illegal
could have been generated and may have failed to legalize further. The
op isn't an illegal one per
https://mlir.llvm.org/docs/DialectConversion/#conversion-target
which is an op that is explicitly marked illegal.
Differential Revision: https://reviews.llvm.org/D116152
Remove the RangeOp and the RangeType that are not actively used anymore. After removing RangeType, the LinalgTypes header only includes the generated dialect header.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115727
MLIR supports recursive types but they could not be handled by the conversion
infrastructure directly as it would result in infinite recursion in
`convertType` for elemental types. Support this case by keeping the "call
stack" of nested type conversions in the TypeConverter class and by passing it
as an optional argument to the individual conversion callback. The callback can
then check if a specific type is present on the stack more than once to detect
and handle the recursive case.
This approach is preferred to the alternative approach of having a separate
callback dedicated to handling only the recursive case as the latter was
observed to introduce ~3% time overhead on a 50MB IR file even if it did not
contain recursive types.
This approach is also preferred to keeping a local stack in type converters
that need to handle recursive types as that would compose poorly in case of
out-of-tree or cross-project extensions.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D113579
[NFC] As part of using inclusive language within the llvm project, this patch
replaces master with main in `SPIR-V.md`.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D114091