A register operand that has a common sub-class with its instruction's
defined register class is not always legal. For example,
SReg_32 and M0Reg both have a common sub-class, but we can't
use an SReg_32 in instructions that expect a M0Reg.
This prevents the llvm.SI.sendmsg.ll test from failing when the fold
operand pass is added.
llvm-svn: 222368
When the BasicBlock containing the return instrution has a PHI with 2
incoming values, FoldReturnIntoUncondBranch will remove the no longer
used incoming value and remove the no longer needed phi as well. This
leaves us with a BB that no longer has a PHI, but the subsequent call
to FoldReturnIntoUncondBranch from FoldReturnAndProcessPred will not
remove the return instruction (which still uses the result of the call
instruction). This prevents EliminateRecursiveTailCall to remove
the value, as it is still being used in a basicblock which has no
predecessors.
The basicblock can not be erased on the spot, because its iterator is
still being used in runTRE.
This issue was exposed when removing the threshold on size for lifetime
marker insertion for named temporaries in clang. The testcase is a much
reduced version of peelOffOuterExpr(const Expr*, const ExplodedNode *)
from clang/lib/StaticAnalyzer/Core/BugReporterVisitors.cpp.
llvm-svn: 222354
This change makes use of the new "job pool" capability in cmake 3.0
with ninja generator to allow limiting the number of concurrent jobs
of a certain type.
llvm-svn: 222341
This patch builds on http://reviews.llvm.org/D5598 to perform byte rotation shuffles (lowerVectorShuffleAsByteRotate) on pre-SSSE3 (palignr) targets - pre-SSSE3 is only enabled on i8 and i16 vector targets where it is a more definite performance gain.
I've also added a separate byte shift shuffle (lowerVectorShuffleAsByteShift) that makes use of the ability of the SLLDQ/SRLDQ instructions to implicitly shift in zero bytes to avoid the need to create a zero register if we had used palignr.
Differential Revision: http://reviews.llvm.org/D5699
llvm-svn: 222340
AliasSetTracker::addUnknown may create an AliasSet devoid of pointers
just to contain an instruction if no suitable AliasSet already exists.
It will then AliasSet::addUnknownInst and we will be done.
However, it's possible for addUnknown to choose an existing AliasSet to
addUnknownInst.
If this were to occur, we are in a bit of a pickle: removing pointers
from the AliasSet can cause the entire AliasSet to become destroyed,
taking our unknown instructions out with them.
Instead, keep track whether or not our AliasSet has any unknown
instructions.
This fixes PR21582.
llvm-svn: 222338
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
Using AA during CodeGen is very useful for in-order cores. It is less useful for ooo cores. Also I find
enabling useAA for Cortex-A57 may generate worse code for some test cases. If useAA in codegen is improved
and benefical for ooo cores, we can enable it again.
llvm-svn: 222333
SeparateConstOffsetFromGEP can gives more optimizaiton opportunities related to GEPs, which benefits EarlyCSE
and LICM. By enabling these passes we can have better address calculations and generate a better addressing
mode. Some SPEC 2006 benchmarks (astar, gobmk, namd) have obvious improvements on Cortex-A57.
Reviewed in http://reviews.llvm.org/D5864.
llvm-svn: 222331
If LowerGEP is enabled, it can lower a GEP with multiple indices into GEPs with a single index
or arithmetic operations. Lowering GEPs can always extract structure indices. Lowering GEPs can
also give use more optimization opportunities. It can benefit passes like CSE, LICM and CGP.
Reviewed in http://reviews.llvm.org/D5864
llvm-svn: 222328
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
llvm-svn: 222319
StringSet is still a bit dodgy in that it exposes the raw iterator of
the StringMap parent, which exposes the weird detail that StringSet
actually has a 'value'... but anyway, this is useful for a handful of
clients that want to reference the newly inserted/persistent string data
in the StringSet/Map/Entry/thing.
llvm-svn: 222302
It printed out base relocation table header as table entry.
This patch also makes llvm-readobj to not skip ABSOLUTE entries
becuase it was confusing.
llvm-svn: 222299
The other option would be to do something like
if (that.isSingleWord())
VAL = that.VAL;
else
pVal = that.pVal
This bug was causing 86TTI::getIntImmCost to be miscompiled in a LTO
bootstrap in stage2, causing the build of stage3 to fail.
LLVM is getting quiet good at exploiting this. Not sure if there is anything
a sanitizer could do to help
llvm-svn: 222294
Summary:
move the code from BreakCriticalEdges::runOnFunction()
into a separate utility function llvm::SplitAllCriticalEdges()
so that it can be used independently.
No functionality change intended.
Test Plan: check-llvm
Reviewers: nlewycky
Reviewed By: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6313
llvm-svn: 222288
This partially makes up for not having address spaces
used for alias analysis in some simple cases.
This is not yet enabled by default so shouldn't change anything yet.
llvm-svn: 222286
Assuming unmodeled side effects interferes with some scheduling
opportunities.
Don't put it in the base class of DS instructions since there
are a few weird effecting, non load/store instructions there.
llvm-svn: 222285
Under many circumstances the stack is not 32-byte aligned, resulting in the use of the vmovups/vmovupd/vmovdqu instructions when inserting ymm reloads/spills.
This minor patch adds these instructions to the isFrameLoadOpcode/isFrameStoreOpcode helpers so that they can be correctly identified and not be treated as folded reloads/spills.
This has also been noticed by http://llvm.org/bugs/show_bug.cgi?id=18846 where it was causing redundant spills - I've added a reduced test case at test/CodeGen/X86/pr18846.ll
Differential Revision: http://reviews.llvm.org/D6252
llvm-svn: 222281
shift-right for booleans (i1).
Arithmetic shift-right immediate with sign-/zero-extensions also works for
boolean values. Update the assert and the test cases to reflect that fact.
llvm-svn: 222272
shift-right for booleans (i1).
Logical shift-right immediate with sign-/zero-extensions also works for boolean
values. Update the assert and the test cases to reflect that fact.
llvm-svn: 222270
We would attempt to replace an frem's operand with the same operand.
This would cause InstCombine to think real work was done, causing
InstCombine to enter an infinite loop.
This fixes the second part of PR21576.
llvm-svn: 222265
Summary: This will help in testing libc++ and libc++abi with tsan.
Reviewers: samsonov
Reviewed By: samsonov
Subscribers: samsonov, llvm-commits
Differential Revision: http://reviews.llvm.org/D6283
llvm-svn: 222258
Shifts also perform sign-/zero-extends to larger types, which requires us to emit
an integer extend instead of a simple COPY.
Related to PR21594.
llvm-svn: 222257
This should expose more of the actually used VALU
instructions to the machine optimization passes.
This also should help getting i1 handling into a better state.
For not entirly understood reasons, this fixes the split-scalar-i64-add.ll
test where a 64-bit add would only partially be moved to the VALU
resulting in use of undefined VCC.
llvm-svn: 222256
"optimizeCompareInstr" converts compares (cmp/cmn) into plain sub/add
instructions when the flags are not used anymore. This conversion is valid for
most instructions, but not all. Some instructions that don't set the flags
(e.g. sub with immediate) can set the SP, whereas the flag setting version uses
the same encoding for the "zero" register.
Update the code to also check for the return register before performing the
optimization to make sure that a cmp doesn't suddenly turn into a sub that sets
the stack pointer.
I don't have a test case for this, because it isn't easy to trigger.
llvm-svn: 222255
This change emits a COPY for a shift-immediate with a "zero" shift value.
This fixes PR21594 where we emitted a shift instruction with an incorrect
immediate operand.
llvm-svn: 222247
EarlyCSE is giving up on the current instruction immediately when it recognizes that the current instruction makes a previous store trivially dead. There's no reason to do this. Once the previous store has been deleted, it's perfectly legal to remember the value of the current store (for value forwarding) and the fact the store occurred (it could be dead too!).
Reviewed by: Hal
Differential Revision: http://reviews.llvm.org/D6301
llvm-svn: 222241
It is impossible for (x & INT_MAX) == 0 && x == INT_MAX to ever be true.
While this sort of reasoning should normally live in InstSimplify,
the machinery that derives this result is not trivial to split out.
llvm-svn: 222230
- Make CallGraphSCCPass's paragraph about doFinalization refer to
runOnSCC instead of runOnFunction, since that's what it's about.
- Fix a reference in the FunctionPass paragraph.
llvm-svn: 222222
Usually global variables are in a retain list and instanciated before
any call to constructImportedEntityDIE is made. This isn't true for
forward declarations though.
The testcase for this change is generated by a clang patched to emit
such forward declarations (patch at http://reviews.llvm.org/D6173
which will land soon). The updated testcase tests more than just
global variables, it now tests every type of 'using' clause we
support.
llvm-svn: 222217
I added a pessimization in r217102 to prevent miscompiles when the
incremented induction variable was used in a comparison; it would be
poison.
Try to use the incremented induction variable more often when we can be
sure that the increment won't end in poison.
Differential Revision: http://reviews.llvm.org/D6222
llvm-svn: 222213
Having the operands at the back prevents subclasses from safely adding
fields. Move them to the front.
Instead of replicating the custom `malloc()`, `free()` and `DestroyFlag`
logic that was there before, overload `new` and `delete`.
I added calls to a new `GenericMDNode::dropAllReferences()` in
`LLVMContextImpl::~LLVMContextImpl()`. There's a maze of callbacks
happening during teardown, and this resolves them before we enter
the destructors.
Part of PR21532.
llvm-svn: 222211
Split `MDNode` into two classes:
- `GenericMDNode`, which is uniquable (and for now, always starts
uniqued). Once `Metadata` is split from the `Value` hierarchy, this
class will lose the ability to RAUW itself.
- `MDNodeFwdDecl`, which is used for the "temporary" interface, is
never uniqued, and isn't managed by `LLVMContext` at all.
I've left most of the guts in `MDNode` for now, but I'll incrementally
move things to the right places (or delete the functionality, as
appropriate).
Part of PR21532.
llvm-svn: 222205
use DIScopeRef.
A paired commit at clang will follow to show cases where we will use an
identifer for the context of a global variable.
rdar://18958417
llvm-svn: 222195
Change uniquing from a `FoldingSet` to a `DenseSet` with custom
`DenseMapInfo`. Unfortunately, this doesn't save any memory, since
`DenseSet<T>` is a simple wrapper for `DenseMap<T, char>`, but I'll come
back to fix that later.
I used the name `GenericDenseMapInfo` to the custom `DenseMapInfo` since
I'll be splitting `MDNode` into two classes soon: `MDNodeFwdDecl` for
temporaries, and `GenericMDNode` for everything else.
I also added a non-debug-info reduced version of a type-uniquing test
that started failing on an earlier draft of this patch.
Part of PR21532.
llvm-svn: 222191
This reverts commit r222183.
Broke on the MSVC buildbots due to MSVC not producing default move
operations - I'd fix it immediately but just broke my build system a
bit, so backing out until I have a chance to get everything going again.
llvm-svn: 222187
The next step is to actually use unique_ptr in TreePatternNode's
Children vector. That will be more intrusive, and may not work,
depending on exactly how these things are handled (I have a bad
suspicion things are shared more than they should be, making this more
DAG than tree - but if it's really a tree, unique_ptr should suffice)
llvm-svn: 222183
This was resulting in use of a register after a kill.
For some reason this showed up as a problem in many tests
when moving the SIFixSGPRCopies pass closer to instruction
selection.
llvm-svn: 222175
When converting a switch to a lookup table we might have to generate a bitmaks
to encode and check for holes in the original switch statement.
The type of this mask depends on the number of switch statements, which can
result in illegal types for pretty much all architectures.
To avoid unnecessary type legalization and help FastISel this commit increases
the size of the bitmask to next power-of-2 value when necessary.
This fixes rdar://problem/18984639.
llvm-svn: 222168
They were producing the wrong result if NumBits == BitsInWord. The old mask
produced -1, the new mask 0.
This should fix the 32 bit bots.
llvm-svn: 222166
The specializations were broken. For example,
void foo(const CallGraph *G) {
auto I = GraphTraits<const CallGraph *>::nodes_begin(G);
auto K = I++;
...
}
or
void bar(const CallGraphNode *N) {
auto I = GraphTraits<const CallGraphNode *>::nodes_begin(G);
auto K = I++;
....
}
would not compile.
Patch by Speziale Ettore!
llvm-svn: 222149
The triple parser should only accept existing architecture names
when the triple starts with armv, armebv, thumbv or thumbebv.
Patch by Gabor Ballabas.
llvm-svn: 222129
SCEVDivision::divide constructed an object of SCEVDivision<Derived>
instead of Derived. divide would call visit which would cast the
SCEVDivision<Derived> to type Derived. As it happens,
SCEVDivision<Derived> and Derived currently have the same layout but
this is fragile and grounds for UB.
Instead, just construct Derived. No functional change intended.
llvm-svn: 222126
This was motivated by a bug which caused code like this to be
miscompiled:
declare void @take_ptr(i8*)
define void @test() {
%addr1.32 = alloca i8
%addr2.32 = alloca i32, i32 1028
call void @take_ptr(i8* %addr1)
ret void
}
This was emitting the following assembly to get the value of %addr1:
add r0, sp, #1020
add r0, r0, #8
However, "add r0, r0, #8" is not a valid Thumb1 instruction, and this
could not be assembled. The generated object file contained this,
resulting in r0 holding SP+8 rather tha SP+1028:
add r0, sp, #1020
add r0, sp, #8
This function looked like it could have caused miscompilations for
other combinations of registers and offsets (though I don't think it is
currently called with these), and the heuristic it used did not match
the emitted code in all cases.
llvm-svn: 222125
We were a little lax in a few areas:
- We pretended that import libraries were like any old COFF file, they
are not. In fact, they aren't really COFF files at all, we should
probably grow some specialized functionality to handle them smarter.
- Our symbol iterators were more than happy to attempt to go past the
end of the symbol table if you had a symbol with a bad list of
auxiliary symbols.
llvm-svn: 222124
Some optimisations in DAGCombiner cause miscompilations for targets that use
TargetLowering::UndefinedBooleanContent, because they assume that the results
of a SELECT_CC node are boolean values, and can be safely ANDed, ORed and
XORed. These optimisations are only valid for targets that use
ZeroOrOneBooleanContent or ZeroOrNegativeOneBooleanContent.
This is a follow-up to D6210/r221693.
llvm-svn: 222123
This is a simple optimization for switch table lookup:
It computes the output value directly with an (optional) mul and add if there is a linear mapping between index and output.
Example:
int f1(int x) {
switch (x) {
case 0: return 10;
case 1: return 11;
case 2: return 12;
case 3: return 13;
}
return 0;
}
generates:
define i32 @f1(i32 %x) #0 {
entry:
%0 = icmp ult i32 %x, 4
br i1 %0, label %switch.lookup, label %return
switch.lookup:
%switch.offset = add i32 %x, 10
ret i32 %switch.offset
return:
ret i32 0
}
llvm-svn: 222121
Indices into the table are stored in each MCRegisterClass instead of a pointer. A new method, getRegClassName, is added to MCRegisterInfo and TargetRegisterInfo to lookup the string in the table.
llvm-svn: 222118
This adds back r222061, but now calls initializePAEvalPass from the correct
library to avoid link problems.
Original message:
Don't make assumptions about the name of private global variables.
Private variables are can be renamed, so it is not reliable to make
decisions on the name.
The name is also dropped by the assembler before getting to the
linker, so using the name causes a disconnect between how llvm makes a
decision (var name) and how the linker makes a decision (section it is
in).
This patch changes one case where we were looking at the variable name to use
the section instead.
Test tuning by Michael Gottesman.
llvm-svn: 222117