Commit Graph

69 Commits

Author SHA1 Message Date
Craig Topper 4252f7773a [SelectionDAG][ARM][AArch64][Hexagon][RISCV][X86] Add SDNPCommutative to fma and fmad nodes in tablegen. Remove explicit commuted patterns from targets.
X86 was already specially marking fma as commutable which allowed
tablegen to autogenerate commuted patterns. This moves it to the target
independent definition and fix up the targets to remove now
unneeded patterns.

Unfortunately, the tests change because the commuted version of
the patterns are generating operands in a different than the
explicit patterns.

Differential Revision: https://reviews.llvm.org/D91842
2020-11-23 10:09:20 -08:00
Sebastian Neubauer 2a6c871596 [InstCombine] Move target-specific inst combining
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.

D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).

This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic

A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.

This allows to move about 3000 lines out from InstCombine to the targets.

Differential Revision: https://reviews.llvm.org/D81728
2020-07-22 15:59:49 +02:00
David Green fa15255d8a [ARM] Convert floating point splats to integer
Under MVE a vdup will always take a gpr register, not a floating point
value. During DAG combine we convert the types to a bitcast to an
integer in an attempt to fold the bitcast into other instructions. This
is OK, but only works inside the same basic block. To do the same trick
across a basic block boundary we need to convert the type in
codegenprepare, before the splat is sunk into the loop.

This adds a convertSplatType function to codegenprepare to do that,
putting bitcasts around the splat to force the type to an integer. There
is then some adjustment to the code in shouldSinkOperands to handle the
extra bitcasts.

Differential Revision: https://reviews.llvm.org/D78728
2020-05-13 15:24:16 +01:00
David Green 1084b32339 [ARM] Always replace FP16 bitcasts with VMOVhr or VMOVrh
This changes the logic with lowering fp16 bitcasts to always produce
either a VMOVhr or a VMOVrh, instead of only trying to do it with
certain surrounding nodes. To perform the same optimisations demand bits
and known bits information has been added for them.

Differential Revision: https://reviews.llvm.org/D78587
2020-04-28 16:12:53 +01:00
David Green eecba95067 [ARM] Replace arm vendor with none. NFC 2020-04-22 18:19:35 +01:00
David Green a0b1616359 [ARM] Regenerate tests. NFC 2020-04-19 13:45:39 +01:00
Simon Tatham 8f1651ccea [ARM,MVE] Add missing tests for vqdmlash intrinsics.
Summary:
These were accidentally left out of D76123. I added tests for the
other three instructions in this small cross-product family (vqdmlah,
vqrdmlah, vqrdmlash) but missed this one.

Reviewers: miyuki

Reviewed By: miyuki

Subscribers: kristof.beyls, dmgreen, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76714
2020-03-25 09:46:16 +00:00
Simon Tatham 1adfa4c991 [ARM,MVE] Add ACLE intrinsics for the vaddv/vaddlv family.
Summary:
I've implemented them as target-specific IR intrinsics rather than
using `@llvm.experimental.vector.reduce.add`, on the grounds that the
'experimental' intrinsic doesn't currently have much code generation
benefit, and my replacements encapsulate the sign- or zero-extension
so that you don't expose the illegal MVE vector type (`<4 x i64>`) in
IR.

The machine instructions come in two versions: with and without an
input accumulator. My new IR intrinsics, like the 'experimental' one,
don't take an accumulator parameter: we represent that by just adding
on the input value using an ordinary i32 or i64 add. So if you write
the `vaddvaq` C-language intrinsic with an input accumulator of zero,
it can be optimised to VADDV, and conversely, if you write something
like `x += vaddvq(y)` then that can be combined into VADDVA.

Most of this is achieved in isel lowering, by converting these IR
intrinsics into the existing `ARMISD::VADDV` family of custom SDNode
types. For the difficult case (64-bit accumulators), isel lowering
already implements the optimization of folding an addition into a
VADDLV to make a VADDLVA; so once we've made a VADDLV, our job is
already done, except that I had to introduce a parallel set of ARMISD
nodes for the //predicated// forms of VADDLV.

For the simpler VADDV, we handle the predicated form by just leaving
the IR intrinsic alone and matching it in an ordinary dag pattern.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76491
2020-03-20 15:42:33 +00:00
Simon Tatham 45a9945b9e [ARM,MVE] Add ACLE intrinsics for the vminv/vmaxv family.
Summary:
I've implemented these as target-specific IR intrinsics, because
they're not //quite// enough like @llvm.experimental.vector.reduce.min
(which doesn't take the extra scalar parameter). Also this keeps the
predicated and unpredicated versions looking similar, and the
floating-point minnm/maxnm versions fold into the same schema.

We had a couple of min/max reductions already implemented, from the
initial pathfinding exercise in D67158. Those were done by having
separate IR intrinsic names for the signed and unsigned integer
versions; as part of this commit, I've changed them to use a flag
parameter indicating signedness, which is how we ended up deciding
that the rest of the MVE intrinsics family ought to work. So now
hopefully the ewhole lot is consistent.

In the new llc test, the output code from the `v8f16` test functions
looks quite unpleasant, but most of it is PCS lowering (you can't pass
a `half` directly in or out of a function). In other circumstances,
where you do something else with your `half` in the same function, it
doesn't look nearly as nasty.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: MarkMurrayARM

Subscribers: kristof.beyls, hiraditya, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76490
2020-03-20 15:42:33 +00:00
David Green b3499f572d [ARM] Change VDUP type to i32 for MVE
The MVE VDUP instruction take a GPR and splats into every lane of a
vector register. Unlike NEON we do not have a VDUPLANE equivalent
instruction, doing the same splat from a fp register. Previously a VDUP
to a v4f32/v8f16 would be represented as a (v4f32 VDUP f32), which
would mean the instruction pattern needs to add a COPY_TO_REGCLASS to
the GPR.

Instead this now converts that earlier during an ISel DAG combine,
converting (VDUP x) to (VDUP (bitcast x)). This can allow instruction
selection to tell that the input needs to be an i32, which in one of the
testcases allows it to use ldr (or specifically ldm) over (vldr;vmov).

Whilst being simple enough for floats, as the types sizes are the same,
these is no BITCAST equivalent for getting a half into a i32. This uses
a VMOVrh ARMISD node, which doesn't know the same tricks yet.

Differential Revision: https://reviews.llvm.org/D76292
2020-03-20 09:48:45 +00:00
Simon Tatham e13d153c1b [ARM,MVE] Add intrinsics for the VQDMLAD family.
Summary:
This is another set of instructions too complicated to be sensibly
expressed in IR by anything short of a target-specific intrinsic.
Given input vectors a,b, the instruction generates intermediate values
2*(a[0]*b[0]+a[1]+b[1]), 2*(a[2]*b[2]+a[3]+b[3]), etc; takes the high
half of each double-width values, and overwrites half the lanes in the
output vector c, which you therefore have to provide the input value
of. Optionally you can swap the elements of b so that the are things
like a[0]*b[1]+a[1]*b[0]; optionally you can round to nearest when
taking the high half; and optionally you can take the difference
rather than sum of the two products. Finally, saturation is applied
when converting back to a single-width vector lane.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: miyuki

Subscribers: kristof.beyls, hiraditya, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76359
2020-03-18 17:11:22 +00:00
Simon Tatham 928776de92 [ARM,MVE] Add intrinsics for the VQDMLAH family.
Summary:
These are complicated integer multiply+add instructions with extra
saturation, taking the high half of a double-width product, and
optional rounding. There's no sensible way to represent that in
standard IR, so I've converted the clang builtins directly to
target-specific intrinsics.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: miyuki

Subscribers: kristof.beyls, hiraditya, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76123
2020-03-18 10:55:04 +00:00
Simon Tatham 28c5d97bee [ARM,MVE] Add intrinsics and isel for MVE integer VMLA.
Summary:
These instructions compute multiply+add in integers, with one of the
operands being a splat of a scalar. (VMLA and VMLAS differ in whether
the splat operand is a multiplier or the addend.)

I've represented these in IR using existing standard IR operations for
the unpredicated forms. The predicated forms are done with target-
specific intrinsics, as usual.

When operating on n-bit vector lanes, only the bottom n bits of the
i32 scalar operand are used. So we have to tell that to isel lowering,
to allow it to remove a pointless sign- or zero-extension instruction
on that input register. That's done in `PerformIntrinsicCombine`, but
first I had to enable `PerformIntrinsicCombine` for MVE targets
(previously all the intrinsics it handled were for NEON), and make it
a method of `ARMTargetLowering` so that it can get at
`SimplifyDemandedBits`.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D76122
2020-03-18 10:55:04 +00:00
David Green f67d93dc23 [ARM] Constant long shift combines
This changes the way that asrl and lsrl intrinsics are lowered, going
via a the ISEL ASRL and LSLL nodes instead of straight to machine nodes.
On top of that, it adds some constant folds for long shifts, in case it
turns out that the shift amount was either constant or 0.

Differential Revision: https://reviews.llvm.org/D75553
2020-03-13 08:54:59 +00:00
David Green 05334de679 [ARM] Long shift tests. NFC 2020-03-12 19:01:49 +00:00
Simon Tatham 3f8e714e2f [ARM,MVE] Add intrinsics and isel for MVE fused multiply-add.
Summary:
This adds the ACLE intrinsic family for the VFMA and VFMS
instructions, which perform fused multiply-add on vectors of floats.

I've represented the unpredicated versions in IR using the cross-
platform `@llvm.fma` IR intrinsic. We already had isel rules to
convert one of those into a vector VFMA in the simplest possible way;
but we didn't have rules to detect a negated argument and turn it into
VFMS, or rules to detect a splat argument and turn it into one of the
two vector/scalar forms of the instruction. Now we have all of those.

The predicated form uses a target-specific intrinsic as usual, but
I've stuck to just one, for a predicated FMA. The subtraction and
splat versions are code-generated by passing an fneg or a splat as one
of its operands, the same way as the unpredicated version.

In arm_mve_defs.h, I've had to introduce a tiny extra piece of
infrastructure: a record `id` for use in codegen dags which implements
the identity function. (Just because you can't declare a Tablegen
value of type dag which is //only// a `$varname`: you have to wrap it
in something. Now I can write `(id $varname)` to get the same effect.)

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75998
2020-03-12 11:13:50 +00:00
Simon Tatham 068b2f313c [ARM,MVE] Add the `vshlcq` intrinsics.
Summary:
The VSHLC instruction performs a left shift of a whole vector register
by an immediate shift count up to 32, shifting in new bits at the low
end from a GPR and delivering the shifted-out bits from the high end
back into the same GPR.

Since the instruction produces two outputs (the shifted vector
register and the output GPR of shifted-out bits), it has to be
instruction-selected in C++ rather than Tablegen.

Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard

Reviewed By: miyuki

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75445
2020-03-04 08:49:27 +00:00
Simon Tatham 810127f6ab [ARM,MVE] Add the `vsbciq` intrinsics.
Summary:
These are exactly parallel to the existing `vadciq` intrinsics, which
we implemented last year as part of the original MVE intrinsics
framework setup.

Just like VADC/VADCI, the MVE VSBC/VSBCI instructions deliver two
outputs, both of which the intrinsic exposes: a modified vector
register and a carry flag. So they have to be instruction-selected in
C++ rather than Tablegen. However, in this case, that's trivial: the
same C++ isel routine we already have for VADC works unchanged, and
all we have to do is to pass it a different instruction id.

Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard

Reviewed By: miyuki

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75444
2020-03-04 08:49:27 +00:00
Simon Tatham 1a8cbfa514 [ARM,MVE] Add ACLE intrinsics for VCVT[ANPM] family.
Summary:
These instructions convert a vector of floats to a vector of integers
of the same size, with assorted non-default rounding modes.
Implemented in IR as target-specific intrinsics, because as far as I
can see there are no matches for that functionality in the standard IR
intrinsics list.

Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75255
2020-03-02 10:33:30 +00:00
Simon Tatham b08d2ddd69 [ARM,MVE] Add ACLE intrinsics for VCVT.F32.F16 family.
Summary:
These instructions make a vector of `<4 x float>` by widening every
other lane of a vector of `<8 x half>`.

I wondered about representing these using standard IR, along the lines
of a shufflevector to extract elements of the input into a `<4 x half>`
followed by an `fpext` to turn that into `<4 x float>`. But it looks as
if that would take a lot of work in isel lowering to make it match any
pattern I could sensibly write in Tablegen, and also I haven't been
able to think of any other case where that pattern might be generated
in IR, so there wouldn't be any extra code generation win from doing
it that way.

Therefore, I've just used another target-specific intrinsic. We can
always change it to the other way later if anyone thinks of a good
reason.

(In order to put the intrinsic definition near similar things in
`IntrinsicsARM.td`, I've also lifted the definition of the
`MVEMXPredicated` multiclass higher up the file, without changing it.)

Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard

Reviewed By: miyuki

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75254
2020-03-02 10:33:30 +00:00
Simon Tatham a41ecf0eb0 [ARM,MVE] Add ACLE intrinsics for VQMOV[U]N family.
Summary:
These instructions work like VMOVN (narrowing a vector of wide values
to half size, and overwriting every other lane of an output register
with the result), except that the narrowing conversion is saturating.
They come in three signedness flavours: signed to signed, unsigned to
unsigned, and signed to unsigned. All are represented in IR by a
target-specific intrinsic that takes two separate 'unsigned' flags.

Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75252
2020-03-02 10:33:30 +00:00
Simon Tatham 9eb3cc10b2 [ARM,MVE] Add predicated intrinsics for many unary functions.
Summary:
This commit adds the predicated MVE intrinsics for the same set of
unary operations that I added in their unpredicated forms in

* D74333 (vrint)
* D74334 (vrev)
* D74335 (vclz, vcls)
* D74336 (vmovl)
* D74337 (vmovn)

but since the predicated versions are a lot more similar to each
other, I've kept them all together in a single big patch. Everything
here is done in the standard way we've been doing other predicated
operations: an IR intrinsic called `@llvm.arm.mve.foo.predicated` and
some isel rules that match that alongside whatever they accept for the
unpredicated version of the same instruction.

In order to write the isel rules conveniently, I've refactored the
existing isel rules for the affected instructions into multiclasses
parametrised by a vector-type class, in the usual way. All those
refactorings are intended to leave the existing isel rules unchanged:
the only difference should be that new ones for the predicated
intrinsics are introduced.

The only tiny infrastructure change I needed in this commit was to
change the implementation of `IntrinsicMX` in `arm_mve_defs.td` so
that the records it defines are anonymous rather than named (and use
`NameOverride` to set the output intrinsic name), which allows me to
call it twice in two multiclasses with the same `NAME` without a
tablegen-time error.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: MarkMurrayARM

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D75165
2020-02-26 15:12:07 +00:00
Mikhail Maltsev f4fd7dbf85 [ARM,MVE] Add vqdmull[b,t]q intrinsic families
Summary:
This patch adds two families of ACLE intrinsics: vqdmullbq and
vqdmulltq (including vector-vector and vector-scalar variants) and the
corresponding LLVM IR intrinsics llvm.arm.mve.vqdmull and
llvm.arm.mve.vqdmull.predicated.

Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard

Reviewed By: MarkMurrayARM

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74845
2020-02-20 10:51:19 +00:00
Mikhail Maltsev 461fd94f00 [ARM,MVE] Fix predicate types of some intrinsics
Summary:
Some predicated MVE intrinsics return a vector with element size
different from the input vector element size. In this case the
predicate must type correspond to the output vector type.

The following intrinsics use the incorrect predicate type:
* llvm.arm.mve.mull.int.predicated
* llvm.arm.mve.mull.poly.predicated
* llvm.arm.mve.vshll.imm.predicated

This patch fixes the issue.

Reviewers: simon_tatham, dmgreen, ostannard, MarkMurrayARM

Reviewed By: MarkMurrayARM

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74838
2020-02-19 16:24:54 +00:00
Mikhail Maltsev 63809d365e [ARM,MVE] Add vbrsrq intrinsics family
Summary:
This patch adds a new MVE intrinsics family, `vbrsrq`: vector bit
reverse and shift right. The intrinsics are compiled into the VBRSR
instruction. Two new LLVM IR intrinsics were also added: arm.mve.vbrsr
and arm.mve.vbrsr.predicated.

Reviewers: simon_tatham, dmgreen, ostannard, MarkMurrayARM

Reviewed By: simon_tatham

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74721
2020-02-18 17:31:21 +00:00
Simon Tatham c32af4447f [ARM,MVE] Add the vmovnbq,vmovntq intrinsic family.
Summary:
These are in some sense the inverse of vmovl[bt]q: they take a vector
of n wide elements and truncate each to half its width. So they only
write half a vector's worth of output data, and therefore they also
take an 'inactive' parameter to provide the other half of the data in
the output vector. So vmovnb overwrites the even lanes of 'inactive'
with the narrowed values from the main input, and vmovnt overwrites
the odd lanes.

LLVM had existing codegen which generates these MVE instructions in
response to IR that takes two vectors of wide elements, or two vectors
of narrow ones. But in this case, we have one vector of each. So my
clang codegen strategy is to narrow the input vector of wide elements
by simply reinterpreting it as the output type, and then we have two
narrow vectors and can represent the operation as a vector shuffle
that interleaves lanes from both of them.

Even so, not all the cases I needed ended up being selected as a
single MVE instruction, so I've added a couple more patterns that spot
combinations of the 'MVEvmovn' and 'ARMvrev32' SDNodes which can be
generated as a VMOVN instruction with operands swapped.

This commit adds the unpredicated forms only.

Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74337
2020-02-18 09:34:50 +00:00
Simon Tatham 5e97940cd2 [ARM,MVE] Add the vmovlbq,vmovltq intrinsic family.
Summary:
These intrinsics take a vector of 2n elements, and return a vector of
n wider elements obtained by sign- or zero-extending every other
element of the input vector. They're represented in IR as a
shufflevector that extracts the odd or even elements of the input,
followed by a sext or zext.

Existing LLVM codegen already matches this pattern and generates the
VMOVLB instruction (which widens the even-index input lanes). But no
existing isel rule was generating VMOVLT, so I've added some. However,
the new rules currently only work in little-endian MVE, because the
pattern they expect from isel lowering includes a bitconvert which
doesn't have the right semantics in big-endian.

The output of one existing codegen test is improved by those new
rules.

This commit adds the unpredicated forms only.

Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74336
2020-02-18 09:34:50 +00:00
Simon Tatham 68b49f7ef4 [ARM,MVE] Add intrinsics vclzq and vclsq.
Summary:
vclzq maps nicely to the existing target-independent @llvm.ctlz IR
intrinsic. But vclsq ('count leading sign bits') has no corresponding
target-independent intrinsic, so I've made up @llvm.arm.mve.vcls.

This commit adds the unpredicated forms only.

Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard

Reviewed By: miyuki

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74335
2020-02-18 09:34:50 +00:00
Simon Tatham c8b3196e54 [ARM,MVE] Add intrinsics for FP rounding operations.
Summary:
This adds the unpredicated forms of six different MVE intrinsics which
all round a vector of floating-point numbers to integer values,
leaving them still in FP format, differing only in rounding mode and
exception settings.

Five of them map to existing target-independent intrinsics in LLVM IR,
such as @llvm.trunc and @llvm.rint. The sixth, mapping to the `vrintn`
instruction, is done by inventing a target-specific intrinsic.

(`vrintn` behaves the same as `vrintx` in terms of the output value:
the side effects on the FPSCR flags are the only difference between
the two. But ACLE specifies separate user-callable intrinsics for the
two, so the side effects matter enough to make sure we generate the
right one of the two instructions in each case.)

Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard

Reviewed By: miyuki

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74333
2020-02-18 09:34:50 +00:00
Mikhail Maltsev 489f62e801 [ARM,MVE] Add vector-scalar intrinsics
Summary:
This patch adds vector-scalar variants to the following families of
MVE intrinsics:
* vaddq
* vsubq
* vmulq
* vqaddq
* vqsubq
* vhaddq
* vhsubq
* vqdmulhq
* vqrdmulhq

The vector-scalar variants perform a splat operation on the scalar
operand and then perform the same operations as their vector-vector
counterparts. Code generation is done accordingly (using LLVM IR 'insert'
and 'shuffle' operations which are later converted into an ARMvdup
SDNode).

Reviewers: simon_tatham, dmgreen, MarkMurrayARM, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74620
2020-02-17 17:47:05 +00:00
Mikhail Maltsev 2694cc3dca [ARM][MVE] Add fixed point vector conversion intrinsics
Summary:
This patch implements the following Arm ACLE MVE intrinsics:
* vcvtq_n_*
* vcvtq_m_n_*
* vcvtq_x_n_*

and two corresponding LLVM IR intrinsics:
* int_arm_mve_vcvt_fix (vcvtq_n_*)
* int_arm_mve_vcvt_fix_predicated (vcvtq_m_n_*, vcvtq_x_n_*)

Reviewers: simon_tatham, ostannard, MarkMurrayARM, dmgreen

Reviewed By: MarkMurrayARM

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D74134
2020-02-06 16:49:45 +00:00
Simon Tatham f8d4afc49a [ARM,MVE] Add intrinsics for v[id]dupq and v[id]wdupq.
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.

At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.

Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.

This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.

Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D73357
2020-02-03 11:20:06 +00:00
Simon Tatham cf7e98e6f7 [ARM,MVE] Add intrinsics for vdupq.
Summary:
The unpredicated case of this is trivial: the clang codegen just makes
a vector splat of the input, and LLVM isel is already prepared to
handle that. For the predicated version, I've generated a `select`
between the same vector splat and the `inactive` input parameter, and
added new Tablegen isel rules to match that pattern into a predicated
`MVE_VDUP` instruction.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D73356
2020-02-03 11:20:06 +00:00
David Green 8a6b948eb5 [MVE] Fixup order of gather writeback intrinsic outputs
The MVE_VLDRWU32_qi_pre gather loads, like the other _pre/_post mve
loads returns the writeback as result 0, the value as result 1. The llvm
ir intrinsic seems to have this the other way around though, and so when
lowering from one to the other we need to switch the first two outputs.

I've also fixed up the types of _pre/_post on normal MVE loads. There we
were already getting the values the right way around, just not for the
types. I don't believe this was causing anything to go wrong, but it was
very confusing to read in the debug output.

Differential Revision: https://reviews.llvm.org/D73370
2020-01-27 14:08:06 +00:00
Simon Tatham 4321c6af28 [ARM,MVE] Support immediate vbicq,vorrq,vmvnq intrinsics.
Summary:
Immediate vmvnq is code-generated as a simple vector constant in IR,
and left to the backend to recognize that it can be created with an
MVE VMVN instruction. The predicated version is represented as a
select between the input and the same constant, and I've added a
Tablegen isel rule to turn that into a predicated VMVN. (That should
be better than the previous VMVN + VPSEL: it's the same number of
instructions but now it can fold into an adjacent VPT block.)

The unpredicated forms of VBIC and VORR are done by enabling the same
isel lowering as for NEON, recognizing appropriate immediates and
rewriting them as ARMISD::VBICIMM / ARMISD::VORRIMM SDNodes, which I
then instruction-select into the right MVE instructions (now that I've
also reworked those instructions to use the same MC operand encoding).
In order to do that, I had to promote the Tablegen SDNode instance
`NEONvorrImm` to a general `ARMvorrImm` available in MVE as well, and
similarly for `NEONvbicImm`.

The predicated forms of VBIC and VORR are represented as a vector
select between the original input vector and the output of the
unpredicated operation. The main convenience of this is that it still
lets me use the existing isel lowering for VBICIMM/VORRIMM, and not
have to write another copy of the operand encoding translation code.

This intrinsic family is the first to use the `imm_simd` system I put
into the MveEmitter tablegen backend. So, naturally, it showed up a
bug or two (emitting bogus range checks and the like). Fixed those,
and added a full set of tests for the permissible immediates in the
existing Sema test.

Also adjusted the isel pattern for `vmovlb.u8`, which stopped matching
because lowering started turning its input into a VBICIMM. Now it
recognizes the VBICIMM instead.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72934
2020-01-23 11:53:52 +00:00
Mark Murray b10a0eb04a [ARM][MVE][Intrinsics] Take abs() of VMINNMAQ, VMAXNMAQ intrinsics' first arguments.
Summary: Fix VMINNMAQ, VMAXNMAQ intrinsics; BOTH arguments have the absolute values taken.

Reviewers: dmgreen, simon_tatham

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72830
2020-01-20 14:33:26 +00:00
David Green ff2e67a4f7 [ARM] MVE VLDn postinc
This adds Post inc variants of the VLD2/4 and VST2/4 instructions in
MVE. It uses the same mechanism/nodes as Neon, transforming the
intrinsic+add pair into a ARMISD::VLD2_UPD, which gets selected to a
post-inc instruction. The code to do that is mostly taken from the
existing Neon code, but simplified as less variants are needed.

It also fills in some getTgtMemIntrinsic for the arm.mve.vld2/4
instrinsics, which allow the nodes to have MMO's, calculated as the full
length to the memory being loaded/stored.

Differential Revision: https://reviews.llvm.org/D71194
2020-01-20 06:57:07 +00:00
David Green d6075726b9 [ARM] MVE VLDn post inc tests. NFC 2020-01-20 06:57:07 +00:00
Mark Murray da9d57d2c2 [ARM][MVE][Intrinsics] Add VMINAQ, VMINNMAQ, VMAXAQ, VMAXNMAQ intrinsics.
Summary: Add VMINAQ, VMINNMAQ, VMAXAQ, VMAXNMAQ intrinsics and unit tests.

Reviewers: simon_tatham, miyuki, dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72761
2020-01-15 17:20:15 +00:00
Simon Tatham dac7b23cc3 [ARM,MVE] Intrinsics for variable shift instructions.
This batch of intrinsics fills in all the shift instructions that take
a variable shift distance in a register, instead of an immediate. Some
of these instructions take a single shift distance in a scalar
register and apply it to all lanes; others take a vector of per-lane
distances.

These instructions are all basically one family, varying in whether
they saturate out-of-range values, and whether they round when bits
are shifted off the bottom. I've implemented them at the IR level by a
much smaller family of IR intrinsics, which take flag parameters to
indicate saturating and/or rounding (along with the usual one to
specify signed/unsigned integers).

An oddity is that all of them are //left// shift instructions – but if
you pass a negative shift count, they'll shift right. So the vector
shift distances are always vectors of //signed// integers, regardless
of whether you're considering the other input vector to be of signed
or unsigned. Also, even the simplest `vshlq` instruction in this
family (neither saturating nor rounding) has to be implemented as an
IR intrinsic, because the ordinary LLVM IR `shl` operation would
consider an out-of-range shift count to be undefined behavior.

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72329
2020-01-08 14:42:24 +00:00
Simon Tatham 3100480925 [ARM,MVE] Intrinsics for partial-overwrite imm shifts.
This batch of intrinsics covers two sets of immediate shift
instructions, which have in common that they only overwrite part of
their output register and so they need an extra input giving its
previous value.

The VSLI and VSRI instructions shift each lane of the input vector
left or right just as if they were normal immediate VSHL/VSHR, but
then they only overwrite the output bits that correspond to actual
shifted bits of the input. So VSLI will leave the low n bits of each
output lane unchanged, and VSRI the same with the top n bits.

The V[Q][R]SHR[U]N family are all narrowing shifts: they take an input
vector of 2n-bit integers, shift each lane right by a constant, and
then narrowing the shifted result to only n bits. So they only
overwrite half of the n-bit lanes in the output register, and the B/T
suffix indicates whether it's the bottom or top half of each 2n-bit
lane.

I've implemented the whole of the latter family using a single IR
intrinsic `vshrn`, which takes a lot of i32 parameters indicating
which instruction it expands to (by specifying signedness of the input
and output types, whether it saturates and/or rounds, etc).

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72328
2020-01-08 14:42:24 +00:00
Simon Tatham 34817e04fe [ARM,MVE] Fix many signedness errors in MVE intrinsics.
Summary:
Running an end-to-end test last week I noticed that a lot of the ACLE
intrinsics that operate differently on vectors of signed and unsigned
integers were ending up generating the signed version of the
instruction unconditionally. This is because the IR intrinsics had no
way to distinguish signed from unsigned: the LLVM type system just
calls them both `v8i16` (or whatever), so you need either separate
intrinsics for signed and unsigned, or a flag parameter that tells
ISel which one to choose.

This patch fixes all the problems of that kind that I've noticed, by
adding an i32 flag parameter to many of the IR intrinsics which is set
to 1 for unsigned (matching the existing practice in cases where we
got it right), and conditioning all the isel patterns on that flag. So
the fundamental change is in `IntrinsicsARM.td`, changing the
low-level IR intrinsics API; there are knock-on changes in
`arm_mve.td` (adjusting code gen for the ACLE intrinsics to use the
modified API) and in `ARMInstrMVE.td` (adjusting isel to expect the
new unsigned flags). The rest of this patch is boringly updating tests.

Reviewers: dmgreen, miyuki, MarkMurrayARM

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72270
2020-01-06 16:33:16 +00:00
Simon Tatham 4978296cd8 [ARM,MVE] Support -ve offsets in gather-load intrinsics.
Summary:
The ACLE intrinsics with `gather_base` or `scatter_base` in the name
are wrappers on the MVE load/store instructions that take a vector of
base addresses and an immediate offset. The immediate offset can be up
to 127 times the alignment unit, and it can be positive or negative.

At the MC layer, we got that right. But in the Sema error checking for
the wrapping intrinsics, the offset was erroneously constrained to be
positive.

To fix this I've adjusted the `imm_mem7bit` class in the Tablegen that
defines the intrinsics. But that causes integer literals like
`0xfffffffffffffe04` to appear in the autogenerated calls to
`SemaBuiltinConstantArgRange`, which provokes a compiler warning
because that's out of the non-overflowing range of an `int64_t`. So
I've also tweaked `MveEmitter` to emit that as `-0x1fc` instead.

Updated the tests of the Sema checks themselves, and also adjusted a
random sample of the CodeGen tests to actually use negative offsets
and prove they get all the way through code generation without causing
a crash.

Reviewers: dmgreen, miyuki, MarkMurrayARM

Reviewed By: dmgreen

Subscribers: kristof.beyls, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D72268
2020-01-06 16:33:07 +00:00
Simon Tatham b99ef32d04 [ARM,MVE] Generate the right instruction for vmaxnmq_m_f16.
Summary:
Due to a copy-paste error in the isel patterns, the predicated version
of this intrinsic was expanding to the `VMAXNMT.F32` instruction
instead of `VMAXNMT.F16`. Similarly for vminnm.

Reviewers: dmgreen, miyuki, MarkMurrayARM

Reviewed By: dmgreen

Subscribers: kristof.beyls, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72269
2020-01-06 16:28:20 +00:00
Mark Murray a2cd4600ec [ARM][MVE][Intrinsics] All vqdmulhq/vqrdmulhq tests should be for signed numbers.
Fix broken tests. I can't yet explain how they worked locally pre-commit.
2019-12-13 17:29:59 +00:00
Mikhail Maltsev 99581fd4c8 [ARM][MVE] Add vector reduction intrinsics with two vector operands
Summary:
This patch adds intrinsics for the following MVE instructions:
* VABAV
* VMLADAV, VMLSDAV
* VMLALDAV, VMLSLDAV
* VRMLALDAVH, VRMLSLDAVH

Each of the above 4 groups has a corresponding new LLVM IR intrinsic,
since the instructions cannot be easily represented using
general-purpose IR operations.

Reviewers: simon_tatham, ostannard, dmgreen, MarkMurrayARM

Reviewed By: MarkMurrayARM

Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71062
2019-12-13 13:17:29 +00:00
Simon Tatham 25305a9311 [ARM][MVE] Add intrinsics for more immediate shifts.
Summary:
This fills in the remaining shift operations that take a single vector
input and an immediate shift count: the `vqshl`, `vqshlu`, `vrshr` and
`vshll[bt]` families.

`vshll[bt]` (which shifts each input lane left into a double-width
output lane) is the most interesting one. There are separate MC
instruction ids for shifting by exactly the input lane width and
shifting by less than that, because the instruction encoding is so
completely different for the lane-width special case. So I had to
write two sets of patterns to match based on the immediate shift
count, which involved adding a ComplexPattern matcher to avoid the
general-case pattern accidentally matching the special case too. For
that family I've made sure to add an llc codegen test for both
versions of each instruction.

I'm experimenting with a new strategy for parametrising the isel
patterns for all these instructions: adding extra fields to the
relevant `Instruction` subclass itself, which are ignored by the
Tablegen backends that generate the MC data, but can be retrieved from
each instance of that instruction subclass when it's passed as a
template parameter to the multiclass that generates its isel patterns.
A nice effect of that is that I can fill in those informational fields
using `let` blocks, rather than having to type them out once per
instruction at `defm` time.

(As a result, quite a lot of existing instruction `def`s are
reindented by this patch, so it's clearer to read with whitespace
changes ignored.)

Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard

Reviewed By: MarkMurrayARM

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71458
2019-12-13 13:07:39 +00:00
Mark Murray 228c74076d [ARM][MVE][Intrinsics] Add *_x() variants of my *_m() intrinsics.
Summary:
Better use of multiclass is used, and this helped find some existing
bugs in the predicated VMULL* intrinsics, which are now fixed.

The refactored VMULL[TB]Q_(INT|POLY)_M() intrinsics were discovered
to have an argument ("inactive") with incorrect type, and this required
a fix that is included in this whole patch. The argument "inactive"
should have been the same width (per vector element) as the return
type of the intrinsic, but was not in the case where the return type
was double the element width of the input types.

To assist in testing the multiclassing , and to thwart further gremlins,
the unit tests are improved in scope.

The *.ll tests are all generated by a small bit of throw-away scripting
from the corresponding *.c tests, and as such the diffs are large and
nasty. Look at the file rather than the diff.

Reviewers: dmgreen, miyuki, ostannard, simon_tatham

Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71421
2019-12-13 11:51:23 +00:00
Simon Tatham bd0f271c9e [ARM][MVE] Add intrinsics for immediate shifts. (reland)
This adds the family of `vshlq_n` and `vshrq_n` ACLE intrinsics, which
shift every lane of a vector left or right by a compile-time
immediate. They mostly work by expanding to the IR `shl`, `lshr` and
`ashr` operations, with their second operand being a vector splat of
the immediate.

There's a fiddly special case, though. ACLE specifies that the
immediate in `vshrq_n` can take values up to //and including// the bit
size of the vector lane. But LLVM IR thinks that shifting right by the
full size of the lane is UB, and feels free to replace the `lshr` with
an `undef` half way through the optimization pipeline. Hence, to keep
this legal in source code, I have to detect it at codegen time.
Logical (unsigned) right shifts by the element size are handled by
simply emitting the zero vector; arithmetic ones are converted into a
shift of one bit less, which will always give the same output.

In order to do that check, I also had to enhance the tablegen
MveEmitter so that it can cope with converting a builtin function's
operand into a bare integer to pass to a code-generating subfunction.
Previously the only bare integers it knew how to handle were flags
generated from within `arm_mve.td`.

Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard

Reviewed By: dmgreen, MarkMurrayARM

Subscribers: echristo, hokein, rdhindsa, kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71065
2019-12-11 10:10:09 +00:00
Mikhail Maltsev e6d3261c67 [ARM][MVE] Refactor complex vector intrinsics [NFCI]
Summary:
This patch refactors instruction selection of the complex vector
addition, multiplication and multiply-add intrinsics, so that it is
now based on TableGen patterns rather than C++ code.

It also changes the first parameter (halving vs non-halving) of the
arm_mve_vcaddq IR intrinsic to match the corresponding instruction
encoding, hence it requires some changes in the tests.

The patch addresses David's comment in https://reviews.llvm.org/D71190

Reviewers: dmgreen, ostannard, simon_tatham, MarkMurrayARM

Reviewed By: dmgreen

Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, llvm-commits

Tags: #clang, #llvm

Differential Revision: https://reviews.llvm.org/D71245
2019-12-10 16:21:52 +00:00