Support using gcc-config to determine the correct GCC toolchain location
on Gentoo. In order to do that, attempt to read gcc-config configuration
form [[sysroot]]/etc/env.d/gcc, if no custom toolchain location is
provided.
Differential Revision: https://reviews.llvm.org/D25661
llvm-svn: 285074
Recent versions of ld64 run a deduplicate pass, which is on by default.
Disable the pass by using -no_deduplicate in certain condition and
enhance total compile time.
rdar://problem/25455336
llvm-svn: 284798
Tests fall into one of the following categories:
- The requirement was unnecessary
- Additional quoting was required for backslashes in paths (see "sed -e
's/\\/\\\\/g'") in the sanitizer tests.
- OpenMP used 'REQUIRES: shell' as a proxy for the test failing on
Windows. Those tests fail there reliably, so use XFAIL instead.
I tried not to remove shell requirements that were added to suppress
flaky test failures, but if I screwed up, we can add it back as needed.
llvm-svn: 284793
The clang-cl test required x86-registered-target but it defaulted to the
host's triple and AArch64 still doesn't support COFF, so the test failed.
The triple was "aarch64-pc-windows-msvc18.0.0" with ObjectFormat equals
llvm::Triple::COFF, failing assertion:
Assertion `(TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()) &&
"Only expect Darwin and ELF targets"
in AArch64MCTargetDesc.cpp:78.
Making the test only run on Windows hosts obviously fixes the problem.
llvm-svn: 284749
System utilities such as atos only support DWARF 4 on OS X 10.11+ and
iOS 9+. We thus want to enable DWARF 4 only if the deployment target
has a recent enough operating system version and use DWARF 2 for older
systems.
<rdar://problem/28766743>
llvm-svn: 284416
Git does not store empty subdirectories (while SVN does). Git clone of
the clang repository did not create the fake Hexagon installation tree
used for testing the driver. This only became evident after a change
in the Hexagon toolchain that started checking for existence of certain
directories.
llvm-svn: 284402
Summary:
These options need to be passed to the plugin in order to have
an effect on LTO/ThinLTO compiles.
Reviewers: mehdi_amini, pcc
Subscribers: jfb, dschuff, mehdi_amini, cfe-commits
Differential Revision: https://reviews.llvm.org/D24644
llvm-svn: 284140
Reapply r283827 by fixing the tests to not be target specific
Currently, driver level warnings do not show option names (e.g. warning:
complain about foo [-Woption-name]) in a diagnostic unless
-fdiagnostics-show-option is explictly specified. OTOH, the driver by
default turn this option on for CC1. Change the logic to show option
names by default in the driver as well.
Differential Revision: https://reviews.llvm.org/D24516
rdar://problem/27300909
llvm-svn: 283913
The backend now has the capability to save information from optimizations, the
same information that can be used to generate optimization diagnostics but in
machine-consumable form, into an output file. This can be enabled when using
opt (see r282539), and this change enables it when using clang. The idea is
that other tools will be able to consume these files, and perhaps in
combination with the original source code, produce various kinds of
optimization reports for users (and for compiler developers).
We now have at-least two tools that can consume these files:
* tools/llvm-opt-report
* utils/opt-viewer
Using the flag -fsave-optimization-record will cause the YAML file to be
generated; the file name will be based on the output file name (if we're using
-c or -S and have an output name), or the input file name. When we're using
CUDA, or some other offloading mechanism, separate files are generated for each
backend target. The output file name can be specified by the user using
-foptimization-record-file=filename.
Differential Revision: https://reviews.llvm.org/D25225
llvm-svn: 283834
Currently, driver level warnings do not show option names (e.g. warning:
complain about foo [-Woption-name]) in a diagnostic unless
-fdiagnostics-show-option is explictly specified. OTOH, the driver by
default turn this option on for CC1. Change the logic to show option
names by default in the driver as well.
Differential Revision: https://reviews.llvm.org/D24516
rdar://problem/27300909
llvm-svn: 283827
The -gmodules option is all about putting debug type info into clang
modules and for line tables the type information is irrelevant, so
combining these two options makes no sense.
This commmit fixes the behavior to match the one documented on the
clang man page: the last -g... option wins.
<rdar://problem/27059770>
llvm-svn: 283810
Make the -print-libgcc-file-name option print an appropriate compiler
runtime library, that is libgcc.a if gcc runtime is used
and an appropriate compiler-rt library if that runtime is used.
The main use for this is to allow linking executables built with
-nodefaultlibs (e.g. to avoid linking to the standard C++ library) to
the compiler runtime library, e.g. using:
clang++ ... -nodefaultlibs $(clang++ ... -print-libgcc-file-name)
in which case currently a program built like this linked to the gcc
runtime unconditionally. The patch fixes it to use compiler-rt libraries
instead when compiler-rt is the active runtime.
Differential Revision: https://reviews.llvm.org/D25338
llvm-svn: 283746
We have a loop-rerolling optimization which can be enabled by using
-freroll-loops. While sometimes loops are hand-unrolled for performance
reasons, when optimizing for size, we should always undo this manual
optimization to produce smaller code (our optimizer's unroller will still
unroll the rerolled loops if it thinks that is a good idea).
llvm-svn: 283685
Revert the -print-libgcc-file-name change as the new test fails
on Darwin. It needs to be updated to run the libgcc part only on systems
supporting that rtlib.
llvm-svn: 283586
Make the -print-libgcc-file-name option print an appropriate compiler
runtime library, that is libgcc.a if gcc runtime is used
and an appropriate compiler-rt library if that runtime is used.
The main use for this is to allow linking executables built with
-nodefaultlibs (e.g. to avoid linking to the standard C++ library) to
the compiler runtime library, e.g. using:
clang++ ... -nodefaultlibs $(clang++ ... -print-libgcc-file-name)
in which case currently a program built like this linked to the gcc
runtime unconditionally. The patch fixes it to use compiler-rt libraries
instead when compiler-rt is the active runtime.
Differential Revision: https://reviews.llvm.org/D25338
llvm-svn: 283572
Provide toolchain and tool support for Fuchsia operating system.
Fuchsia uses compiler-rt as the runtime library and libc++, libc++abi
and libunwind as the C++ standard library. lld is used as a default
linker.
Differential Revision: https://reviews.llvm.org/D25117
llvm-svn: 283420
We could hook up /GL as an alias for -flto, but that might be
confusing, as clang-cl in that mode would not be drop-in compatible
with cl.exe /GL, as it requires the linker to be lld.
Exposing -flto seems like a less confusing way to expose this
functionality.
llvm-svn: 283255
Added the code which explicitly emits an error in Clang in case
`-fxray-instrument` is passed, but XRay is not supported for the
selected target.
Author: rSerge
Reviewers: dberris, rsmith, aaron.ballman, rnk
Subscribers: cfe-commits, iid_iunknown
Differential Revision: https://reviews.llvm.org/D24799
llvm-svn: 283193
Summary:
Also makes -fcoroutines_ts to be both a Driver and CC1 flag.
Patch mostly by EricWF.
Reviewers: rnk, cfe-commits, rsmith, EricWF
Subscribers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D25130
llvm-svn: 283064
Enable soft-float support on PPC64, as the backend now supports it. Also, the
backend now uses -hard-float instead of +soft-float, so set the target features
accordingly.
Fixes PR26970.
llvm-svn: 283061
Summary:
This patch proposes a new class to generate and record action dependences related with offloading. The builder provides three main functionalities:
- Add device dependences to host actions.
- Add host dependence to device actions.
- Register device top-level actions.
The constructor of the builder detect the programming models that should be supported, and generates a specialized builder for each. If a new programming model is to be added in the future, only a new specialized builder has to be implemented.
When the specialized builder is generated, it produces programming-model-specific diagnostics.
A CUDA specialized builder is proposed in the patch that mostly consists of the partition of the current `buildCudaAction` by the three different functionalities.
Reviewers: tra, echristo, ABataev, jlebar, hfinkel
Subscribers: Hahnfeld, whchung, guansong, jlebar, mehdi_amini, andreybokhanko, tcramer, mkuron, cfe-commits, arpith-jacob, carlo.bertolli, caomhin
Differential Revision: https://reviews.llvm.org/D18172
llvm-svn: 282865