Summary: The new way of checking fix-its is `%check_analyzer_fixit`.
Reviewed By: NoQ, Szelethus, xazax.hun
Differential Revision: https://reviews.llvm.org/D73729
Summary:
This patch introduces a way to apply the fix-its by the Analyzer:
`-analyzer-config apply-fixits=true`.
The fix-its should be testable, therefore I have copied the well-tested
`check_clang_tidy.py` script. The idea is that the Analyzer's workflow
is different so it would be very difficult to use only one script for
both Tidy and the Analyzer, the script would diverge a lot.
Example test: `// RUN: %check-analyzer-fixit %s %t -analyzer-checker=core`
When the copy-paste happened the original authors were:
@alexfh, @zinovy.nis, @JonasToth, @hokein, @gribozavr, @lebedev.ri
Reviewed By: NoQ, alexfh, zinovy.nis
Differential Revision: https://reviews.llvm.org/D69746
STL Algorithms are usually implemented in a tricky for performance
reasons which is too complicated for the analyzer. Furthermore inlining
them is costly. Instead of inlining we should model their behavior
according to the specifications.
This patch is the first step towards STL Algorithm modeling. It models
all the `find()`-like functions in a simple way: the result is either
found or not. In the future it can be extended to only return success if
container modeling is also extended in a way the it keeps track of
trivial insertions and deletions.
Differential Revision: https://reviews.llvm.org/D70818
This is useful for clients that are relying on linearized CFGs for evaluating
subexpressions and want the default initializer to be evaluated properly.
The upcoming lifetime analysis is using this but it might also be useful
for the static analyzer at some point.
Differential Revision: https://reviews.llvm.org/D71642
This patch introduced additional PointerEscape callbacks after conservative
calls for output parameters. This should not really affect the current
checkers but the upcoming FuchsiaHandleChecker relies on this heavily.
Differential Revision: https://reviews.llvm.org/D71224
Allow attaching fixit hints to Static Analyzer BugReports.
Fixits are attached either to the bug report itself or to its notes
(path-sensitive event notes or path-insensitive extra notes).
Add support for fixits in text output (including the default text output that
goes without notes, as long as the fixit "belongs" to the warning).
Add support for fixits in the plist output mode.
Implement a fixit for the path-insensitive DeadStores checker. Only dead
initialization warning is currently covered.
Implement a fixit for the path-sensitive VirtualCall checker when the virtual
method is not pure virtual (in this case the "fix" is to suppress the warning
by qualifying the call).
Both fixits are under an off-by-default flag for now, because they
require more careful testing.
Differential Revision: https://reviews.llvm.org/D65182
llvm-svn: 371257
Enables the users to specify an optional flag which would warn for more dead
stores.
Previously it ignored if the dead store happened e.g. in an if condition.
if ((X = generate())) { // dead store to X
}
This patch introduces the `WarnForDeadNestedAssignments` option to the checker,
which is `false` by default - so this change would not affect any previous
users.
I have updated the code, tests and the docs as well. If I missed something, tell
me.
I also ran the analysis on Clang which generated 14 more reports compared to the
unmodified version. All of them seemed reasonable for me.
Related previous patches:
rGf224820b45c6847b91071da8d7ade59f373b96f3
Reviewers: NoQ, krememek, Szelethus, baloghadamsoftware
Reviewed By: Szelethus
Patch by Balázs Benics!
Differential Revision: https://reviews.llvm.org/D66733
llvm-svn: 370767
This patch concludes my GSoC'19 project by enabling track-conditions by default.
Differential Revision: https://reviews.llvm.org/D66381
llvm-svn: 369616
Summary:
This patch introduces a new `analyzer-config` configuration:
`-analyzer-config silence-checkers`
which could be used to silence the given checkers.
It accepts a semicolon separated list, packed into quotation marks, e.g:
`-analyzer-config silence-checkers="core.DivideZero;core.NullDereference"`
It could be used to "disable" core checkers, so they model the analysis as
before, just if some of them are too noisy it prevents to emit reports.
This patch also adds support for that new option to the scan-build.
Passing the option `-disable-checker core.DivideZero` to the scan-build
will be transferred to `-analyzer-config silence-checkers=core.DivideZero`.
Reviewed By: NoQ, Szelethus
Differential Revision: https://reviews.llvm.org/D66042
llvm-svn: 369078
While we implemented taint propagation rules for several
builtin/standard functions, there's a natural desire for users to add
such rules to custom functions.
A series of patches will implement an option that allows users to
annotate their functions with taint propagation rules through a YAML
file. This one adds parsing of the configuration file, which may be
specified in the commands line with the analyzer config:
alpha.security.taint.TaintPropagation:Config. The configuration may
contain propagation rules, filter functions (remove taint) and sink
functions (give a warning if it gets a tainted value).
I also added a new header for future checkers to conveniently read YAML
files as checker options.
Differential Revision: https://reviews.llvm.org/D59555
llvm-svn: 367190
Summary:
During CTU analysis of complex projects, the loaded AST-contents of
imported TUs can grow bigger than available system memory. This option
introduces a threshold on the number of TUs to be imported for a single
TU in order to prevent such cases.
Differential Revision: https://reviews.llvm.org/D59798
llvm-svn: 365314
This patch is a major part of my GSoC project, aimed to improve the bug
reports of the analyzer.
TL;DR: Help the analyzer understand that some conditions are important,
and should be explained better. If an CFGBlock is a control dependency
of a block where an expression value is tracked, explain the condition
expression better by tracking it.
if (A) // let's explain why we believe A to be true
10 / x; // division by zero
This is an experimental feature, and can be enabled by the
off-by-default analyzer configuration "track-conditions".
In detail:
This idea was inspired by the program slicing algorithm. Essentially,
two things are used to produce a program slice (a subset of the program
relevant to a (statement, variable) pair): data and control
dependencies. The bug path (the linear path in the ExplodedGraph that leads
from the beginning of the analysis to the error node) enables to
analyzer to argue about data dependencies with relative ease.
Control dependencies are a different slice of the cake entirely.
Just because we reached a branch during symbolic execution, it
doesn't mean that that particular branch has any effect on whether the
bug would've occured. This means that we can't simply rely on the bug
path to gather control dependencies.
In previous patches, LLVM's IDFCalculator, which works on a control flow
graph rather than the ExplodedGraph was generalized to solve this issue.
We use this information to heuristically guess that the value of a tracked
expression depends greatly on it's control dependencies, and start
tracking them as well.
After plenty of evaluations this was seen as great idea, but still
lacking refinements (we should have different descriptions about a
conditions value), hence it's off-by-default.
Differential Revision: https://reviews.llvm.org/D62883
llvm-svn: 365207
Summary:
This new piece is similar to our macro expansion printing in HTML reports:
On mouse-hover event it pops up on variables. Similar to note pieces it
supports `plist` diagnostics as well.
It is optional, on by default: `add-pop-up-notes=true`.
Extra: In HTML reports `background-color: LemonChiffon` was too light,
changed to `PaleGoldenRod`.
Reviewers: NoQ, alexfh
Reviewed By: NoQ
Subscribers: cfe-commits, gerazo, gsd, george.karpenkov, alexfh, xazax.hun,
baloghadamsoftware, szepet, a.sidorin, mikhail.ramalho,
Szelethus, donat.nagy, dkrupp
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60670
llvm-svn: 362014
The more entries we have in AnalyzerOptions::ConfigTable, the more helpful
debug.ConfigDumper is. With this patch, I'm pretty confident that it'll now emit
the entire state of the analyzer, minus the frontend flags.
It would be nice to reserve the config table specifically to checker options
only, as storing the regular analyzer configs is kinda redundant.
Differential Revision: https://reviews.llvm.org/D57922
llvm-svn: 361006
Summary: This is just changing naming and documentation to be general about external definitions that can be imported for cross translation unit analysis. There is at least a plan to add VarDecls: D46421
Reviewers: NoQ, xazax.hun, martong, a.sidorin, george.karpenkov, serge-sans-paille
Reviewed By: xazax.hun, martong
Subscribers: mgorny, whisperity, baloghadamsoftware, szepet, rnkovacs, mikhail.ramalho, Szelethus, donat.nagy, dkrupp, cfe-commits
Differential Revision: https://reviews.llvm.org/D56441
llvm-svn: 350852
Summary:
With a new switch we may be able to print to stderr if a new TU is being loaded
during CTU. This is very important for higher level scripts (like CodeChecker)
to be able to parse this output so they can create e.g. a zip file in case of
a Clang crash which contains all the related TU files.
Reviewers: xazax.hun, Szelethus, a_sidorin, george.karpenkov
Subscribers: whisperity, baloghadamsoftware, szepet, rnkovacs, a.sidorin, mikhail.ramalho, donat.nagy, dkrupp,
Differential Revision: https://reviews.llvm.org/D55135
llvm-svn: 348594
In earlier patches regarding AnalyzerOptions, a lot of effort went into
gathering all config options, and changing the interface so that potential
misuse can be eliminited.
Up until this point, AnalyzerOptions only evaluated an option when it was
querried. For example, if we had a "-no-false-positives" flag, AnalyzerOptions
would store an Optional field for it that would be None up until somewhere in
the code until the flag's getter function is called.
However, now that we're confident that we've gathered all configs, we can
evaluate off of them before analysis, so we can emit a error on invalid input
even if that prticular flag will not matter in that particular run of the
analyzer. Another very big benefit of this is that debug.ConfigDumper will now
show the value of all configs every single time.
Also, almost all options related class have a similar interface, so uniformity
is also a benefit.
The implementation for errors on invalid input will be commited shorty.
Differential Revision: https://reviews.llvm.org/D53692
llvm-svn: 348031
I'm in the process of refactoring AnalyzerOptions. The main motivation behind
here is to emit warnings if an invalid -analyzer-config option is given from
the command line, and be able to list them all.
In this patch, I found some flags that should've been used as checker options,
or have absolutely no mention of in AnalyzerOptions, or are nonexistent.
- NonLocalizedStringChecker now uses its "AggressiveReport" flag as a checker
option
- lib/StaticAnalyzer/Frontend/ModelInjector.cpp now accesses the "model-path"
option through a getter in AnalyzerOptions
- -analyzer-config path-diagnostics-alternate=false is not a thing, I removed it,
- lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp and
lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h are weird, they actually
only contain an option getter. I deleted them, and fixed RetainCountChecker
to get it's "leak-diagnostics-reference-allocation" option as a checker option,
- "region-store-small-struct-limit" has a proper getter now.
Differential Revision: https://reviews.llvm.org/D53276
llvm-svn: 345985
Before C++17 copy elision was optional, even if the elidable copy/move
constructor had arbitrary side effects. The elidable constructor is present
in the AST, but marked as elidable.
In these cases CFG now contains additional information that allows its clients
to figure out if a temporary object is only being constructed so that to pass
it to an elidable constructor. If so, it includes a reference to the elidable
constructor's construction context, so that the client could elide the
elidable constructor and construct the object directly at its final destination.
Differential Revision: https://reviews.llvm.org/D47616
llvm-svn: 335795
This patch adds two new CFG elements CFGScopeBegin and CFGScopeEnd that indicate
when a local scope begins and ends respectively. We use first VarDecl declared
in a scope to uniquely identify it and add CFGScopeBegin and CFGScopeEnd elements
into corresponding basic blocks.
Differential Revision: https://reviews.llvm.org/D16403
llvm-svn: 327258
Don't enable c++-temp-dtor-inlining by default yet, due to this reference
counting pointe problem.
Otherwise the new mode seems stable and allows us to incrementally fix C++
problems in much less hacky ways.
Differential Revision: https://reviews.llvm.org/D43804
llvm-svn: 326461
It was introduced when two -analyzer-config options were added almost
simultaneously in r324793 and r324668 and the option count was not
rebased correctly in the tests.
Fixes the buildbots.
llvm-svn: 324801
This patch adds a new CFGStmt sub-class, CFGConstructor, which replaces
the regular CFGStmt with CXXConstructExpr in it whenever the CFG has additional
information to provide regarding what sort of object is being constructed.
It is useful for figuring out what memory is initialized in client of the
CFG such as the Static Analyzer, which do not operate by recursive AST
traversal, but instead rely on the CFG to provide all the information when they
need it. Otherwise, the statement that triggers the construction and defines
what memory is being initialized would normally occur after the
construct-expression, and the client would need to peek to the next CFG element
or use statement parent map to understand the necessary facts about
the construct-expression.
As a proof of concept, CFGConstructors are added for new-expressions
and the respective test cases are provided to demonstrate how it works.
For now, the only additional data contained in the CFGConstructor element is
the "trigger statement", such as new-expression, which is the parent of the
constructor. It will be significantly expanded in later commits. The additional
data is organized as an auxiliary structure - the "construction context",
which is allocated separately from the CFGElement.
Differential Revision: https://reviews.llvm.org/D42672
llvm-svn: 324668
This patch introduces a new CFG element CFGLoopExit that indicate when a loop
ends. It does not deal with returnStmts yet (left it as a TODO).
It hidden behind a new analyzer-config flag called cfg-loopexit (false by
default).
Test cases added.
The main purpose of this patch right know is to make loop unrolling and loop
widening easier and more efficient. However, this information can be useful for
future improvements in the StaticAnalyzer core too.
Differential Revision: https://reviews.llvm.org/D35668
llvm-svn: 311235
This feature allows the analyzer to consider loops to completely unroll.
New requirements/rules (for unrolling) can be added easily via ASTMatchers.
Right now it is hidden behind a flag, the aim is to find the correct heuristic
and create a solution which results higher coverage % and more precise
analysis, thus can be enabled by default.
Right now the blocks which belong to an unrolled loop are marked by the
LoopVisitor which adds them to the ProgramState.
Then whenever we encounter a CFGBlock in the processCFGBlockEntrance which is
marked then we skip its investigating. That means, it won't be considered to
be visited more than the maximal bound for visiting since it won't be checked.
llvm-svn: 309006
requirements/rules (for unrolling) can be added easily via ASTMatchers.
The current implementation is hidden behind a flag.
Right now the blocks which belong to an unrolled loop are marked by the
LoopVisitor which adds them to the ProgramState. Then whenever we encounter a
CFGBlock in the processCFGBlockEntrance which is marked then we skip its
investigating. That means, it won't be considered to be visited more than the
maximal bound for visiting since it won't be checked.
Differential Revision: https://reviews.llvm.org/D34260
llvm-svn: 308558
Summary:
This mimics the implementation for the implicit destructors. The
generation of this scope leaving elements is hidden behind
a flag to the CFGBuilder, thus it should not affect existing code.
Currently, I'm missing a test (it's implicitly tested by the clang-tidy
lifetime checker that I'm proposing).
I though about a test using debug.DumpCFG, but then I would
have to add an option to StaticAnalyzer/Core/AnalyzerOptions
to enable the scope leaving CFGElement,
which would only be useful to that particular test.
Any other ideas how I could make a test for this feature?
Reviewers: krememek, jordan_rose
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D15031
llvm-svn: 307759
This makes the analyzer around 10% slower by default,
allowing it to find deeper bugs.
Default values for the following -analyzer-config change:
max-nodes: 150000 -> 225000;
max-inlinable-size: 50 -> 100.
rdar://problem/32539666
Differential Revision: https://reviews.llvm.org/D34277
llvm-svn: 305900
Summary:
Dear All,
We have been looking at the following problem, where any code after the constant bound loop is not analyzed because of the limit on how many times the same block is visited, as described in bugzillas #7638 and #23438. This problem is of interest to us because we have identified significant bugs that the checkers are not locating. We have been discussing a solution involving ranges as a longer term project, but I would like to propose a patch to improve the current implementation.
Example issue:
```
for (int i = 0; i < 1000; ++i) {...something...}
int *p = 0;
*p = 0xDEADBEEF;
```
The proposal is to go through the first and last iterations of the loop. The patch creates an exploded node for the approximate last iteration of constant bound loops, before the max loop limit / block visit limit is reached. It does this by identifying the variable in the loop condition and finding the value which is “one away” from the loop being false. For example, if the condition is (x < 10), then an exploded node is created where the value of x is 9. Evaluating the loop body with x = 9 will then result in the analysis continuing after the loop, providing x is incremented.
The patch passes all the tests, with some modifications to coverage.c, in order to make the ‘function_which_gives_up’ continue to give up, since the changes allowed the analysis to progress past the loop.
This patch does introduce possible false positives, as a result of not knowing the state of variables which might be modified in the loop. I believe that, as a user, I would rather have false positives after loops than do no analysis at all. I understand this may not be the common opinion and am interested in hearing your views. There are also issues regarding break statements, which are not considered. A more advanced implementation of this approach might be able to consider other conditions in the loop, which would allow paths leading to breaks to be analyzed.
Lastly, I have performed a study on large code bases and I think there is little benefit in having “max-loop” default to 4 with the patch. For variable bound loops this tends to result in duplicated analysis after the loop, and it makes little difference to any constant bound loop which will do more than a few iterations. It might be beneficial to lower the default to 2, especially for the shallow analysis setting.
Please let me know your opinions on this approach to processing constant bound loops and the patch itself.
Regards,
Sean Eveson
SN Systems - Sony Computer Entertainment Group
Reviewers: jordan_rose, krememek, xazax.hun, zaks.anna, dcoughlin
Subscribers: krememek, xazax.hun, cfe-commits
Differential Revision: http://reviews.llvm.org/D12358
llvm-svn: 251621
Add an option (-analyzer-config min-blocks-for-inline-large=14) to control the function
size the inliner considers as large, in relation to "max-times-inline-large". The option
defaults to the original hard coded behaviour, which I believe should be adjustable with
the other inlining settings.
The analyzer-config test has been modified so that the analyzer will reach the
getMinBlocksForInlineLarge() method and store the result in the ConfigTable, to ensure it
is dumped by the debug checker.
A patch by Sean Eveson!
Differential Revision: http://reviews.llvm.org/D12406
llvm-svn: 247463
The analyzer doesn't currently expect CFG blocks with terminators to be
empty, but this can happen when generating conditional destructors for
a complex logical expression, such as (a && (b || Temp{})). Moreover,
the branch conditions for these expressions are not persisted in the
state. Even for handling noreturn destructors this needs more work.
This reverts r186498.
llvm-svn: 186925