* Renamed to be camel case, consistent with other docs.
* Fixed non-ascii characters (this is what I get for writing docs on an iPad).
llvm-svn: 263840
The loop on IVOperand's incoming values assumes IVOperand to be an
induction variable on the loop over which `S Pred X` is invariant;
otherwise loop invariant incoming values to IVOperand are not guaranteed
to dominate the comparision.
This fixes PR26973.
llvm-svn: 263827
In the <DisplayString> of PointerIntPair , I cast the pointer to the actual type, so VS can leverage it while visualizing, not unlike the recent change to PointerUnion visualization.
In the expansion, the current code is casting to the incorrect type (wrong number of stars), so I fixed that as well.
llvm-svn: 263821
This patch adds unscaled loads and sign-extend loads to the TII
getMemOpBaseRegImmOfs API, which is used to control clustering in the MI
scheduler. This is done to create more opportunities for load pairing. I've
also added the scaled LDRSWui instruction, which was missing from the scaled
instructions. Finally, I've added support in shouldClusterLoads for clustering
adjacent sext and zext loads that too can be paired by the load/store optimizer.
Differential Revision: http://reviews.llvm.org/D18048
llvm-svn: 263819
Summary:
These dependencies would be used in the future to reduce the number
of instrumented blocks(http://reviews.llvm.org/rL262103)
This is submitted as a separate CL because of previous problems with
ARM.
Subscribers: aemerson
Differential Revision: http://reviews.llvm.org/D18227
llvm-svn: 263797
Summary:
Allow the selection of BUFFER_LOAD_FORMAT_x and _XY. Do this now before
the frontend patches land in Mesa. Eventually, we may want to automatically
reduce the size of loads at the LLVM IR level, which requires such overloads,
and in some cases Mesa can generate them directly.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18255
llvm-svn: 263792
Summary:
These intrinsics expose the BUFFER_ATOMIC_* instructions and will be used
by Mesa to implement atomics with buffer semantics. The intrinsic interface
matches that of buffer.load.format and buffer.store.format, except that the
GLC bit is not exposed (it is automatically deduced based on whether the
return value is used).
The change of hasSideEffects is required for TableGen to accept the pattern
that matches the intrinsic.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, rivanvx, llvm-commits
Differential Revision: http://reviews.llvm.org/D18151
llvm-svn: 263791
Summary:
We cannot easily deduce that an offset is in an SGPR, but the Mesa frontend
cannot easily make use of an explicit soffset parameter either. Furthermore,
it is likely that in the future, LLVM will be in a better position than the
frontend to choose an SGPR offset if possible.
Since there aren't any frontend uses of these intrinsics in upstream
repositories yet, I would like to take this opportunity to change the
intrinsic signatures to a single offset parameter, which is then selected
to immediate offsets or voffsets using a ComplexPattern.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18218
llvm-svn: 263790
Now that the resolved path cache stores the StringRef's, its
best to just always cache the results, even when realpath isn't
used. This way we'll still avoid the StringMap hashing and lookup.
This also conveniently reorganises this code in a way I need for
a future patch.
llvm-svn: 263777
ResolvedPaths was storing std::string's as a cache. We would then take those strings and look them up in the internString pool to get a unique StringRef for each path.
This patch changes ResolvedPaths to store the StringRef pointing in to the internString pool itself. This way, when getResolvedPath returns a string, we know we have the StringRef we would find in the pool anyway. We can avoid the duplicate memory of the std::string's, and also the time from the lookup.
Unfortunately my profiles show no runtime change here, but it should still save memory allocations which is nice.
Reviewed by Frederic Riss.
Differential Revision: http://reviews.llvm.org/D18259
llvm-svn: 263774
Summary:
It can hurt performance to prefetch ahead too much. Be conservative for
now and don't prefetch ahead more than 3 iterations on Cyclone.
Reviewers: hfinkel
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17949
llvm-svn: 263772
Summary:
And use this TTI for Cyclone. As it was explained in the original RFC
(http://thread.gmane.org/gmane.comp.compilers.llvm.devel/92758), the HW
prefetcher work up to 2KB strides.
I am also adding tests for this and the previous change (D17943):
* Cyclone prefetching accesses with a large stride
* Cyclone not prefetching accesses with a small stride
* Generic Aarch64 subtarget not prefetching either
Reviewers: hfinkel
Subscribers: aemerson, rengolin, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17945
llvm-svn: 263771
Summary:
This wires up the pass for Cyclone but keeps it off for now because we
need a few more TTIs.
The getPrefetchMinStride value is not very well tuned right now but it
works well with CFP2006/433.milc which motivated this.
Tests will be added as part of the upcoming large-stride prefetching
patch.
Reviewers: t.p.northover
Subscribers: llvm-commits, aemerson, hfinkel, rengolin
Differential Revision: http://reviews.llvm.org/D17943
llvm-svn: 263770
A virtual index of -1u indicates that the subprogram's virtual index is
unrepresentable (for example, when using the relative vtable ABI), so do
not emit a DW_AT_vtable_elem_location attribute for it.
Differential Revision: http://reviews.llvm.org/D18236
llvm-svn: 263765
MSVC as usual:
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\include\llvm/ADT/STLExtras.h(120):
error C2100: illegal indirection
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\include\llvm/IR/Instructions.h(3966):
note: see reference to class template instantiation
'llvm::mapped_iterator<llvm::User::op_iterator,llvm::CatchSwitchInst::DerefFnTy>'
being compiled
This reverts commit e091dd63f1f34e043748e28ad160d3bc17731168.
llvm-svn: 263760
For fcmp, major concern about the following 6 cases is NaN result. The
comparison result consists of 4 bits, indicating lt, eq, gt and un (unordered),
only one of which will be set. The result is generated by fcmpu
instruction. However, bc instruction only inspects one of the first 3
bits, so when un is set, bc instruction may jump to to an undesired
place.
More specifically, if we expect an unordered comparison and un is set, we
expect to always go to true branch; in such case UEQ, UGT and ULT still
give false, which are undesired; but UNE, UGE, ULE happen to give true,
since they are tested by inspecting !eq, !lt, !gt, respectively.
Similarly, for ordered comparison, when un is set, we always expect the
result to be false. In such case OGT, OLT and OEQ is good, since they are
actually testing GT, LT, and EQ respectively, which are false. OGE, OLE
and ONE are tested through !lt, !gt and !eq, and these are true.
llvm-svn: 263753
idiom.
Most LLVM tool code exits immediately when an error is encountered and prints an
error message to stderr. The ExitOnError class supports this by providing two
call operators - one for Errors, and one for Expected<T>s. Calls to code that
can return Errors (or Expected<T>s) can use these calls to bail out on error,
and otherwise continue as if the operation had succeeded. E.g.
Error foo();
Expected<int> bar();
int main(int argc, char *argv[]) {
ExitOnError ExitOnErr;
ExitOnErr.setBanner(std::string("Error in ") + argv[0] + ":");
// Exit if foo returns an error. No need to manually check error return.
ExitOnErr(foo());
// Exit if bar returns an error, otherwise unwrap the contained int and
// continue.
int X = ExitOnErr(bar());
// ...
return 0;
}
llvm-svn: 263749
Summary:
Use the new LoopVersioning facility (D16712) to add noalias metadata in
the vector loop if we versioned with memchecks. This can enable some
optimization opportunities further down the pipeline (see the included
test or the benchmark improvement quoted in D16712).
The test also covers the bug I had in the initial version in D16712.
The vectorizer did not previously use LoopVersioning. The reason is
that the vectorizer performs its transformations in single shot. It
creates an empty single-block vector loop that it then populates with
the widened, if-converted instructions. Thus creating an intermediate
versioned scalar loop seems wasteful.
So this patch (rather than bringing in LoopVersioning fully) adds a
special interface to LoopVersioning to allow the vectorizer to add
no-alias annotation while still performing its own versioning.
As the vectorizer propagates metadata from the instructions in the
original loop to the vector instructions we also check the pointer in
the original instruction and see if LoopVersioning can add no-alias
metadata based on the issued memchecks.
Reviewers: hfinkel, nadav, mzolotukhin
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17191
llvm-svn: 263744
Summary:
If we decide to version a loop to benefit a transformation, it makes
sense to record the now non-aliasing accesses in the newly versioned
loop. This allows non-aliasing information to be used by subsequent
passes.
One example is 456.hmmer in SPECint2006 where after loop distribution,
we vectorize one of the newly distributed loops. To vectorize we
version this loop to fully disambiguate may-aliasing accesses. If we
add the noalias markers, we can use the same information in a later DSE
pass to eliminate some dead stores which amounts to ~25% of the
instructions of this hot memory-pipeline-bound loop. The overall
performance improves by 18% on our ARM64.
The scoped noalias annotation is added in LoopVersioning. The patch
then enables this for loop distribution. A follow-on patch will enable
it for the vectorizer. Eventually this should be run by default when
versioning the loop but first I'd like to get some feedback whether my
understanding and application of scoped noalias metadata is correct.
Essentially my approach was to have a separate alias domain for each
versioning of the loop. For example, if we first version in loop
distribution and then in vectorization of the distributed loops, we have
a different set of memchecks for each versioning. By keeping the scopes
in different domains they can conveniently be defined independently
since different alias domains don't affect each other.
As written, I also have a separate domain for each loop. This is not
necessary and we could save some metadata here by using the same domain
across the different loops. I don't think it's a big deal either way.
Probably the best is to review the tests first to see if I mapped this
problem correctly to scoped noalias markers. I have plenty of comments
in the tests.
Note that the interface is prepared for the vectorizer which needs the
annotateInstWithNoAlias API. The vectorizer does not use LoopVersioning
so we need a way to pass in the versioned instructions. This is also
why the maps have to become part of the object state.
Also currently, we only have an AA-aware DSE after the vectorizer if we
also run the LTO pipeline. Depending how widely this triggers we may
want to schedule a DSE toward the end of the regular pass pipeline.
Reviewers: hfinkel, nadav, ashutosh.nema
Subscribers: mssimpso, aemerson, llvm-commits, mcrosier
Differential Revision: http://reviews.llvm.org/D16712
llvm-svn: 263743
I hit a crash in the bitcode reader on some corrupt input where an
MDString had somehow been attached to an instruction instead of an
MDNode. This input is pretty bogus, but we shouldn't be crashing on bad
input here.
This change adds error handling in all of the places where we
currently have unchecked casts from Metadata to MDNode, which means
we'll error out instead of crashing for that sort of input.
Unfortunately, I don't have tests. Hitting this requires flipping bits
in the input bitcode, and committing corrupt binary files to catch
these cases is a bit too opaque and unmaintainable.
llvm-svn: 263742
Summary:
The multiprocessing.Queue.put() call can hang if we try queueing all the
tests before starting to take them out of the queue.
The current implementation hangs if tests exceed 2^^15, on Mac OS X.
This might happen with a ninja check-all if one has a bunch of llvm
projects.
Reviewers: delcypher, bkramer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17609
llvm-svn: 263731
Autogenerated from the corresponding assembler tests with a few FIXME added (will fix soon).
Differential Revision: http://reviews.llvm.org/D18249
llvm-svn: 263729
This patch prevents CTR loops optimization when using soft float operations
inside loop body. Soft float operations use function calls, but function
calls are not allowed inside CTR optimized loops.
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D17600
llvm-svn: 263727
Summary:
MRI::eliminateFrameIndex can emit several instructions to do address
calculations; these can usually be stackified. Because instructions with
FI operands can have subsequent operands which may be expression trees,
find the top of the leftmost tree and insert the code before it, to keep
the LIFO property.
Also use stackified registers when writing back the SP value to memory
in the epilog; it's unnecessary because SP will not be used after the
epilog, and it results in better code.
Differential Revision: http://reviews.llvm.org/D18234
llvm-svn: 263725
Symmary:
ds_permute/ds_bpermute do not read memory so s_waitcnt is not needed.
Reviewers
arsenm, tstellarAMD
Subscribers
llvm-commits, arsenm
Differential Revision:
http://reviews.llvm.org/D18197
llvm-svn: 263720
Summary:
As explained by the comment, threads will typically see different values
returned by atomic instructions even if the arguments are equal.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18156
llvm-svn: 263719
We were being too aggressive in trying to combine a shuffle into a blend-with-zero pattern, often resulting in a endless loop of contrasting combines
This patch stops the combine if we already have a blend in place (means we miss some domain corrections)
llvm-svn: 263717
This is similar to D18133 where we allowed profile weights on select instructions.
This extends that change to also allow the 'unpredictable' attribute of branches to apply to selects.
A test to check that 'unpredictable' metadata is preserved when cloning instructions was checked in at:
http://reviews.llvm.org/rL263648
Differential Revision: http://reviews.llvm.org/D18220
llvm-svn: 263716
The two changes together weakened the test and caused a regression with division
handling in MSVC mode. They were applied to avoid an assertion being triggered
in the block frequency analysis. However, the underlying problem was simply
being masked rather than solved properly. Address the actual underlying problem
and revert the changes. Rather than analyze the cause of the assertion, the
division failure was assumed to be an overflow.
The underlying issue was a subtle bug in the BB construction in the emission of
the div-by-zero check (WIN__DBZCHK). We did not construct the proper successor
information in the basic blocks, nor did we update the PHIs associated with the
basic block when we split them. This would result in assertions being triggered
in the block frequency analysis pass.
Although the original tests are being removed, the tests themselves performed
very little in terms of validation but merely tested that we did not assert when
generating code. Update this with new tests that actually ensure that we do not
regress on the code generation.
llvm-svn: 263714
It might be hard to recognize a hexadecimal number without '0x' prefix.
Besides that '0x' prefix corresponds to GNU objdump behaviour.
Differential Revision: http://reviews.llvm.org/D18207
llvm-svn: 263705
That allows, for example, to print hex-formatted immediates using
llvm-objdump --print-imm-hex command line option.
Differential Revision: http://reviews.llvm.org/D18195
llvm-svn: 263704
Summary:
This should eliminate all occurrences of this within LLVMMipsAsmParser.
This patch is in response to http://reviews.llvm.org/D17983. I was unable
to reproduce the warnings on my machine so please advise if this fixes the
warnings.
Reviewers: ariccio, vkalintiris, dsanders
Subscribers: dblaikie, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18087
llvm-svn: 263703
The section alignment field was marked optional but not provided a
default value: initialize it with 0.
While we are here, ensure that the section alignment is plausible.
llvm-svn: 263692
This splits out the logic that maps the `"statepoint-id"` attribute into
the actual statepoint ID, and the `"statepoint-num-patch-bytes"`
attribute into the number of patchable bytes the statpeoint is lowered
into. The new home of this logic is in IR/Statepoint.cpp, and this
refactoring will support similar functionality when lowering calls with
deopt operand bundles in the future.
llvm-svn: 263685
The allocator here can still be a nullptr, but this atleast makes the
single caller which needed nullptr be explicit about it.
Note, lld started always passing a parameter here as of r263680. If
anything builds out of sync, that would be why errors may occur.
llvm-svn: 263681
In lld we allocate atoms on an allocator and so don't run their
destructors. This means we also shouldn't allocate memory inside
them without that also being on an allocator.
Reviewed by Lang Hames and Rafael Espindola.
llvm-svn: 263676
Summary: If TBAA is on an intrinsic and it gets upgraded and drops the TBAA we hit an odd assert. We should just upgrade the TBAA first because it doesn't have side-effects.
Reviewers: reames, apilipenko, manmanren
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18229
llvm-svn: 263673
Summary:
This is a step towards implementing "direct" lowering of calls and
invokes with deopt operand bundles into STATEPOINT nodes (as opposed to
having them mandatorily pass through RewriteStatepointsForGC, which is
the case today).
This change extracts out a `SelectionDAGBuilder::LowerAsStatepoint`
helper function that is able to lower a "statepoint like thing", and
uses it to lower `gc.statepoint` calls. This is an NFC now, but in a
later change we will use `LowerAsStatepoint` to directly lower calls and
invokes with operand bundles without going through an intermediate
`gc.statepoint` IR representation.
FYI: I expect `SelectionDAGBuilder::StatepointInfo` will evolve as I add
support for lowering non gc.statepoints, right now it is fairly tightly
coupled with an IR level `gc.statepoint`.
Reviewers: reames, pgavlin, JosephTremoulet
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18106
llvm-svn: 263671
I'm testing out a script that auto-generates the check lines.
It's 98% copied from utils/update_llc_test_checks.py.
If others think this is useful, please let me know.
llvm-svn: 263668
I'm testing out a script that auto-generates the check lines.
It's 98% copied from utils/update_llc_test_checks.py.
If others think this is useful, please let me know.
llvm-svn: 263667
- Rename getATOMIC to getSYNC, as llvm will soon be able to emit both
'__sync' libcalls and '__atomic' libcalls, and this function is for
the '__sync' ones.
- getInsertFencesForAtomic() has been replaced with
shouldInsertFencesForAtomic(Instruction), so that the decision can be
made per-instruction. This functionality will be used soon.
- emitLeadingFence/emitTrailingFence are no longer called if
shouldInsertFencesForAtomic returns false, and thus don't need to
check the condition themselves.
llvm-svn: 263665
SelectionDAGBuilder::populateCallLoweringInfo is now used instead of
SelectionDAGBuilder::lowerCallOperands. The populateCallLoweringInfo
interface is more composable in face of design changes like
http://reviews.llvm.org/D18106
llvm-svn: 263663
The swift frontend needs to be able to look up PGO function name
variables based on the original raw function name. That's because it's
not possible to create PGO function name variables while emitting swift
IR. Instead, we have to create the name variables while lowering swift
IR to llvm IR, at which point we fix up all calls to the increment
intrinsic to point to the right name variable.
llvm-svn: 263662
Summary:
Uniform loops where the branch leaving the loop is predicated on VCCNZ
must be skipped if EXEC = 0, otherwise they will be infinite.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18137
llvm-svn: 263658
Summary:
Fix LSRInstance::HoistInsertPosition() to check the original insert
position block first for a canonical insertion point that is dominated
by all inputs. This leads to SCEV being able to reuse more instructions
since it currently tracks the instructions it creates for reuse by
keeping a table of <Value, insert point> pairs.
Reviewers: atrick
Subscribers: mcrosier, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18001
llvm-svn: 263644
And emit an error if it fails.
This prevents illegal instructions from getting sent to the GPU, which
would potentially result in a hang.
This is a candidate for the stable branch(es).
Reviewed-by: Marek Olšák <marek.olsak@amd.com>
llvm-svn: 263627
Fork off compatibility.ll for the 3.8 release. The *.bc file in this
commit was produced using a Release build of the release_38 branch.
llvm-svn: 263620
This patch introduces the Error classs for lightweight, structured,
recoverable error handling. It includes utilities for creating, manipulating
and handling errors. The scheme is similar to exceptions, in that errors are
described with user-defined types. Unlike exceptions however, errors are
represented as ordinary return types in the API (similar to the way
std::error_code is used).
For usage notes see the LLVM programmer's manual, and the Error.h header.
Usage examples can be found in unittests/Support/ErrorTest.cpp.
Many thanks to David Blaikie, Mehdi Amini, Kevin Enderby and others on the
llvm-dev and llvm-commits lists for lots of discussion and review.
llvm-svn: 263609
We can currently only match zeroable vector elements of the same size as the shuffle type - these tests demonstrate the problem and a solution will be shortly added in an updated D14261
llvm-svn: 263606
The latent bug that LLE exposed in the LoopVectorizer was resolved
(PR26952).
The pass can be disabled with -mllvm -enable-loop-load-elim=0
llvm-svn: 263595
There is something strange going on with debug info (.eh_frame_hdr)
disappearing when msan.module_ctor are placed in comdat sections.
Moving this functionality under flag, disabled by default.
llvm-svn: 263579
Annoyingly, ErrorOr allows to *not check* the error when things go
well. It will crash badly when there is an error though. It should
runtime assert when it is used without being checked!
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263577
Record all variable defs with a summary record to aid in building a
complete reference graph and locating constant variable defs to import.
llvm-svn: 263576
Summary: This change adds a PACKAGE_VENDOR variable. When set it makes the version output more closely resemble the clang version output.
Reviewers: aprantl, bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18159
llvm-svn: 263566
This was a latent bug that got exposed by the change to add LoopSimplify
as a dependence to LoopLoadElimination. Since LoopInfo was corrupted
after LV, LoopSimplify mis-compiled nbench in the test-suite (more
details in the PR).
The problem was that when we create the blocks for predicated stores we
didn't add those to any loops.
The original testcase for store predication provides coverage for this
assuming we verify LI on the way out of LV.
Fixes PR26952.
llvm-svn: 263565
Summary:
Static LDS size is saved in MachineFunctionInfo::LDSSize,
We define a pseudo instruction with usesCustomInserter bit set. Then, in EmitInstrWithCustomInserter,
we replace this pseudo instruction with a mov of MachineFunctionInfo::LDSSize.
Reviewers:
arsenm
tstellarAMD
Subscribers
llvm-commits, arsenm
Differential Revision:
http://reviews.llvm.org/D18064
llvm-svn: 263563
The PE TLS directory contains information about where the TLS data
resides in the image, what functions should be executed when threads are
created, etc.
llvm-svn: 263537
Summary:
LLVMGetTargetDataLayout was removed from the C API,
and then TargetMachine.TargetData was removed. Later,
LLVMCreateTargetMachineData was added to the C API,
and we now expose this via the Go API.
Reviewers: deadalnix, pcc
Subscribers: cierniak, llvm-commits, axw
Differential Revision: http://reviews.llvm.org/D18173
llvm-svn: 263530
Since the static getGlobalIdentifier and getGUID methods are now called
for global values other than functions, reflect that by moving these
methods to the GlobalValue class.
llvm-svn: 263524
In some places, like InstCombine, we resize a DenseMap to fit the elements
we intend to put in it, then insert those elements (to avoid continual
reallocations as it grows). But .resize(foo) doesn't actually do what
people think; it resizes to foo buckets (which is really an
implementation detail the user of DenseMap probably shouldn't care about),
not the space required to fit foo elements. DenseMap grows if 3/4 of its
buckets are full, so this actually causes one forced reallocation every
time instead of avoiding a reallocation.
This patch makes .resize(foo) do the intuitive thing: it grows to the size
necessary to fit foo elements without new allocations.
Also include a test to verify that .resize() actually does what we think it
does.
llvm-svn: 263522
This patch adds support for the MachO .alt_entry assembly directive, and uses
it for global aliases with non-zero GEP offsets. The alt_entry flag indicates
that a symbol should be layed out immediately after the preceding symbol.
Conceptually it introduces an alternate entry point for a function or data
structure. E.g.:
safe_foo:
// check preconditions for foo
.alt_entry fast_foo
fast_foo:
// body of foo, can assume preconditions.
The .alt_entry flag is also implicitly set on assembly aliases of the form:
a = b + C
where C is a non-zero constant, since these have the same effect as an
alt_entry symbol: they introduce a label that cannot be moved relative to the
preceding one. Setting the alt_entry flag on aliases of this form fixes
http://llvm.org/PR25381.
llvm-svn: 263521
Instead of running an explicit loop over `gc.relocate` calls hanging off
of a `gc.statepoint`, assert the validity of the type of the value being
relocated in `visitRelocate`.
llvm-svn: 263516
`MCSymbolRefExpr` variant kind for TLSCALL is prefixed with
_ARM_ since this is how it was originally implemented.
The X86_64 version is exactly the same so there's no reason
to create a new variant, we can just rename the existing
one to be machine-independent.
This generalization is the first step to implement support
for GNU2 TLS dialect in MC.
Differential Revision: http://reviews.llvm.org/D18160
llvm-svn: 263515
(Resubmitting after fixing missing file issue)
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263513
Summary:
Specifically, when we perform runtime loop unrolling of a loop that
contains a convergent op, we can only unroll k times, where k divides
the loop trip multiple.
Without this change, we'll happily unroll e.g. the following loop
for (int i = 0; i < N; ++i) {
if (i == 0) convergent_op();
foo();
}
into
int i = 0;
if (N % 2 == 1) {
convergent_op();
foo();
++i;
}
for (; i < N - 1; i += 2) {
if (i == 0) convergent_op();
foo();
foo();
}.
This is unsafe, because we've just added a control-flow dependency to
the convergent op in the prelude.
In general, runtime unrolling loops that contain convergent ops is safe
only if we don't have emit a prelude, which occurs when the unroll count
divides the trip multiple.
Reviewers: resistor
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17526
llvm-svn: 263509
These types are defined in ELFFile, so in order to use them, you have
to write ELFFile<ELFT>::SomeType. But there seems to be no reason to have
ELFFile have these types. This patch allows you to write ELFT::SomeType
instead.
This simplifies libObject users.
This is an example: http://reviews.llvm.org/D18129http://reviews.llvm.org/D18130
llvm-svn: 263504
Summary: This now try to reorder instructions in order to help create the optimizable pattern.
Reviewers: craig.topper, spatel, dexonsmith, Prazek, chandlerc, joker.eph, majnemer
Differential Revision: http://reviews.llvm.org/D16523
llvm-svn: 263503
Summary:
This form was replaced by a form taking an instruction instead of opcode and
return type in r258391. After committing this change (and some depending,
follow-up changes) it turned out in the review thread to be controversial. The
discussion didn't come to a conclusion yet. I'm re-adding the old form to fix
the API regression and to provide a better base for discussion, possibly on
llvm-dev.
A difference to the original function is that it can't be called with GEPs
(similarly to how it was already the case for compares). In order to support
opaque pointers in the future, folding GEPs needs to be passed the source
element type, which is not possible with the current API.
Reviewers: dberlin, reames
Subscribers: dblaikie, eddyb
Differential Revision: http://reviews.llvm.org/D17901
llvm-svn: 263501
If anybody is actually using this, it probably doesn't do what they
think it does. This actually causes the dylib to *export* a
__cxa_atexit symbol, so anything that links it probably loses their
exit time destructors as well as disabling LLVM's.
This just removes the option entirely. If somebody does need this
behaviour we should figure out a more principled way to do it.
This is effectively a revert of r223805.
llvm-svn: 263498
Summary:
llvm-config --libs does not produce correct output since commit r260263
(llvm-config: Add preliminary Windows support) changed naming format of
the libraries. This patch updates llvm-config to recognize new naming
format and output correct linker flags.
Ref: https://llvm.org/bugs/show_bug.cgi?id=26581
Patch by Vedran Miletić
Reviewers: ehsan, rnk, pxli168
Subscribers: pxli168
Differential Revision: http://reviews.llvm.org/D17300
llvm-svn: 263497
Summary: There are places in MachineBlockPlacement where a worklist is filled in pretty much identical way. The code is duplicated. This refactor it so that the same code is used in both scenarii.
Reviewers: chandlerc, majnemer, rafael, MatzeB, escha, silvas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18077
llvm-svn: 263495
With the changes in r263275, there are now more than just functions in
the summary. Completed the renaming of data structures (started in
r263275) to reflect the wider scope. In particular, changed the
FunctionIndex* data structures to ModuleIndex*, and renamed related
variables and comments. Also renamed the files to reflect the changes.
A companion clang patch will immediately succeed this patch to reflect
this renaming.
llvm-svn: 263490
Summary:
This check was added in rL152620, and has started causing downstream warnings in Julia:
```
In file included from /home/tkelman/Julia/julia-0.5/src/codegen.cpp:22:0:
/home/tkelman/Julia/julia-0.5/usr/include/llvm/ExecutionEngine/JITEventListener.h:84:5: warning: "LLVM_USE_INTEL_JITEVENTS" is not defined [-Wundef]
#if LLVM_USE_INTEL_JITEVENTS
^
/home/tkelman/Julia/julia-0.5/usr/include/llvm/ExecutionEngine/JITEventListener.h💯5: warning: "LLVM_USE_OPROFILE" is not defined [-Wundef]
#if LLVM_USE_OPROFILE
^
```
Patch by Tony Kelman.
Reviewers: loladiro
Differential Revision: http://reviews.llvm.org/D17254
llvm-svn: 263487
As noted in:
https://llvm.org/bugs/show_bug.cgi?id=26636
This doesn't accomplish anything on its own. It's the first step towards preserving
and using branch weights with selects.
The next step would be to make sure we're propagating the info in all of the other
places where we create selects (SimplifyCFG, InstCombine, etc). I don't think there's
an easy fix to make this happen; we have to look at each transform individually to
determine how to correctly propagate the weights.
Along with that step, we need to then use the weights when making subsequent transform
decisions such as discussed in http://reviews.llvm.org/D16836.
The inliner test is independent but closely related. It verifies that metadata is
preserved when both branches and selects are cloned.
Differential Revision: http://reviews.llvm.org/D18133
llvm-svn: 263482
Summary:
Previously we had a notion of convergent functions but not of convergent
calls. This is insufficient to correctly analyze calls where the target
is unknown, e.g. indirect calls.
Now a call is convergent if it targets a known-convergent function, or
if it's explicitly marked as convergent. As usual, we can remove
convergent where we can prove that no convergent operations are
performed in the call.
Originally landed as r261544, then reverted in r261544 for (incidental)
build breakage. Re-landed here with no changes.
Reviewers: chandlerc, jingyue
Subscribers: llvm-commits, tra, jhen, hfinkel
Differential Revision: http://reviews.llvm.org/D17739
llvm-svn: 263481
Some instructions were missing isBranch, isCall, or isTerminator
flags. This didn't really affect code generation since most of
the affected patterns were used only for the AsmParser and/or
disassembler.
However, it could affect tools using the MC layer to disassemble
and parse binary code (e.g. via MCInstrDesc::mayAffectControlFlow).
llvm-svn: 263478
The bad behavior happens when we have a function with a long linear chain of
basic blocks, and have a live range spanning most of this chain, but with very
few uses.
Let say we have only 2 uses.
The Hopfield network is only seeded with two active blocks where the uses are,
and each iteration of the outer loop in `RAGreedy::growRegion()` only adds two
new nodes to the network due to the completely linear shape of the CFG.
Meanwhile, `SpillPlacer->iterate()` visits the whole set of discovered nodes,
which adds up to a quadratic algorithm.
This is an historical accident effect from r129188.
When the Hopfield network is expanding, most of the action is happening on the
frontier where new nodes are being added. The internal nodes in the network are
not likely to be flip-flopping much, or they will at least settle down very
quickly. This means that while `SpillPlacer->iterate()` is recomputing all the
nodes in the network, it is probably only the two frontier nodes that are
changing their output.
Instead of recomputing the whole network on each iteration, we can maintain a
SparseSet of nodes that need to be updated:
- `SpillPlacement::activate()` adds the node to the todo list.
- When a node changes value (i.e., `update()` returns true), its neighbors are
added to the todo list.
- `SpillPlacement::iterate()` only updates the nodes in the list.
The result of Hopfield iterations is not necessarily exact. It should converge
to a local minimum, but there is no guarantee that it will find a global
minimum. It is possible that updating nodes in a different order will cause us
to switch to a different local minimum. In other words, this is not NFC, but
although I saw a few runtime improvements and regressions when I benchmarked
this change, those were side effects and actually the performance change is in
the noise as expected.
Huge thanks to Jakob Stoklund Olesen <stoklund@2pi.dk> for his feedbacks,
guidance and time for the review.
llvm-svn: 263460
When the SP in not changed because of realignment/VLAs etc., we restore the SP
by using the previous value of SP and not the FP. Breaking the dependency will
help in cases when the epilog of a callee is close to the epilog of the caller;
for then "sub sp, fp, #" depends on the load restoring the FP in the epilog of
the callee.
http://reviews.llvm.org/D18060
Patch by Aditya Kumar and Evandro Menezes.
llvm-svn: 263458
Converting masked vector loads to regular vector loads for x86 AVX should always be a win.
I raised the legality issue of reading the extra memory bytes on llvm-dev. I did not see any
objections.
1. x86 already does this kind of optimization for multiple scalar loads -> vector load.
2. If other targets have the same flexibility, we could move this transform up to CGP or DAGCombiner.
Differential Revision: http://reviews.llvm.org/D18094
llvm-svn: 263446
Summary:
MIPSR6 introduces a class of branches called compact branches. Unlike the
traditional MIPS branches which have a delay slot, compact branches do not
have a delay slot. The instruction following the compact branch is only
executed if the branch is not taken and must not be a branch.
It works by generating compact branches for MIPS32R6 when the delay slot
filler cannot fill a delay slot. Then, inspecting the generated code for
forbidden slot hazards (a compact branch with an adjacent branch or other
CTI) and inserting nops to clear this hazard.
Patch by Simon Dardis.
Reviewers: vkalintiris, dsanders
Subscribers: MatzeB, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D16353
llvm-svn: 263444
Summary:
When multiple threads perform an atomic op with the same arguments, they
will usually see different return values.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18101
llvm-svn: 263440
On the z13, it turns out to be more efficient to access a full
floating-point register than just the upper half (as done e.g.
by the LE and LER instructions).
Current code already takes this into account when loading from
memory by using the LDE instruction in place of LE. However,
we still generate LER, which shows the same performance issues
as LE in certain circumstances.
This patch changes the back-end to emit LDR instead of LER to
implement FP32 register-to-register copies on z13.
llvm-svn: 263431
Summary:
With the addition of checks to ensure that operands have a strict ordering
it has become tricky to manage the order in the way I originally intended.
This patch linearizes the ordering which simplifies the implementation but
requires an order that is arbitrary in places. Here are some examples:
* uimm4 < uimm5 < uimm6
* simm4 < uimm4 < simm5 < uimm5
* uimm5 < uimm5_plus1 (1..32) < uimm5_plus32 (32..63) < uimm6
The term 'superset' starts to break down here since the *_plus* classes
are not true supersets of uimm5 (but they are still subsets of uimm6).
* uimm5 < uimm5_64, and uimm5 < vsplat_uimm5
This is entirely arbitrary. We need an ordering and what we pick is
unimportant since only one is possible for a given mnemonic.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D17723
llvm-svn: 263423
s_bitset0_b64, s_bitset1_b64 has 32-bit src0, not 64-bit.
s_rfe_b64 has just one destination operand and no source.
Uncomment S_BITCMP* and S_SETVSKIP, adjust SOPC_* classes for that.
Add s_memrealtime test and change comments in smem.s to follow common style.
Change test for s_memtime to use non-zero register to make it really test encoding.
Add tests for s_buffer_load*.
Add tests for SOPC instructions (same for SI and VI)
Differential Revision: http://reviews.llvm.org/D18040
llvm-svn: 263420
It's failing to build on VS2015 with:
C:\b\build\slave\ClangToTWin\build\src\third_party\llvm\lib\Target\WebAssembly\WebAssemblyRegStackify.cpp(520):
error C2668: 'llvm::make_reverse_iterator': ambiguous call to overloaded function
C:\b\build\slave\ClangToTWin\build\src\third_party\llvm\include\llvm/ADT/STLExtras.h(217):
note: could be 'std::reverse_iterator<llvm::MachineBasicBlock::iterator>
llvm::make_reverse_iterator<llvm::MachineInstrBundleIterator<llvm::MachineInstr>>(IteratorTy)'
with
[
IteratorTy=llvm::MachineInstrBundleIterator<llvm::MachineInstr>
]
C:\b\depot_tools\win_toolchain\vs_files\391bbf1220d3edcd3cc3fccdb56224181e3b13a7\win_sdk\bin\..\..\VC\include\xutility(1217):
note: or 'std::reverse_iterator<llvm::MachineBasicBlock::iterator>
std::make_reverse_iterator<llvm::MachineInstrBundleIterator<llvm::MachineInstr>>(_RanIt)' [found using argument-dependent lookup]
with
[
_RanIt=llvm::MachineInstrBundleIterator<llvm::MachineInstr>
]
I don't have VS2015 locally at the moment, but hopefully this will help.
llvm-svn: 263418
The motivating example is this
for (j = n; j > 1; j = i) {
i = j / 2;
}
The signed division is safely to be changed to an unsigned division (j is known
to be larger than 1 from the loop guard) and later turned into a single shift
without considering the sign bit.
llvm-svn: 263406
Summary: This comes from work to make attribute manipulable via the C API.
Reviewers: gottesmm, hfinkel, baldrick, echristo, tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18128
llvm-svn: 263404
Summary:
There is no definition about MinLatency any more.
Reviewers: mcrosier, spatel, hfinkel
Differential Revision: http://reviews.llvm.org/D18079
llvm-svn: 263403
For cases where we are truncating an integer vector arithmetic result, it may be better to pre-truncate the input operands - no code to support this yet (scalar is done with SimplifyDemandedBits but adding vector support could be a lot of work) but these tests represent the current codegen status.
Example bugs: PR14666, PR22703
llvm-svn: 263384
The SSE41 v8i16 shift lowering using (v)pblendvb is great for non-constant shift amounts, but if it is constant then we can efficiently reduce the VSELECT to shuffles with the pre-SSE41 lowering.
llvm-svn: 263383
Fundamentally, the length of a variable or function name is bound by the
maximum size of a record: 0xffff. However, the name doesn't live in a
vacuum; other data is associated with the name, lowering the bound
further.
We would naively attempt to emit the name, causing us to assert because
the record would no-longer fit in 16-bits. Instead, truncate the name
but preserve as much as we can.
While I have tested this locally, I've decided to not commit it due to
the test's size.
N.B. While this behavior is undesirable, it is better than MSVC's
behavior. They seem to truncate to ~4000 characters.
llvm-svn: 263378
It had a weird artificial limitation on the write side: the comdat name
couldn't be bigger than 2**16. However, the reader had no such
limitation. Make the reader and the writer agree.
llvm-svn: 263377
This follows up on the related AVX instruction transforms, but this
one is too strange to do anything more with. Intel's behavioral
description of this instruction in its Software Developer's Manual
is tragi-comic.
llvm-svn: 263340
This patch corresponds to review:
http://reviews.llvm.org/D17712
We were not clearing the TOC vector in PPCAsmPrinter when initializing it. This
caused duplicate definition asserts when the pass is reused on the module
(i.e. with -compile-twice or in JIT contexts).
llvm-svn: 263338
This lets us for example start running the unit test suite early. For
'check-llvm' on my machine, this drops the tim e from 44s to 32s!!!!!
It's pretty ugly. I barely know how to write Python, so feel free to
just tell me how I should write it instead. =D Thanks to Filipe and
others for help.
Differential Revision: http://reviews.llvm.org/D18089
llvm-svn: 263329
cmpxchg[8|16]b uses RBX as one of its argument.
In other words, using this instruction clobbers RBX as it is defined to hold one
the input. When the backend uses dynamically allocated stack, RBX is used as a
reserved register for the base pointer.
Reserved registers have special semantic that only the target understands and
enforces, because of that, the register allocator don’t use them, but also,
don’t try to make sure they are used properly (remember it does not know how
they are supposed to be used).
Therefore, when RBX is used as a reserved register but defined by something that
is not compatible with that use, the register allocator will not fix the
surrounding code to make sure it gets saved and restored properly around the
broken code. This is the responsibility of the target to do the right thing with
its reserved register.
To fix that, when the base pointer needs to be preserved, we use a different
pseudo instruction for cmpxchg that save rbx.
That pseudo takes two more arguments than the regular instruction:
- One is the value to be copied into RBX to set the proper value for the
comparison.
- The other is the virtual register holding the save of the value of RBX as the
base pointer. This saving is done as part of isel (i.e., we emit a copy from
rbx).
cmpxchg_save_rbx <regular cmpxchg args>, input_for_rbx_reg, save_of_rbx_as_bp
This gets expanded into:
rbx = copy input_for_rbx_reg
cmpxchg <regular cmpxchg args>
rbx = save_of_rbx_as_bp
Note: The actual modeling of the pseudo is a bit more complicated to make sure
the interferes that appears after the pseudo gets expanded are properly modeled
before that expansion.
This fixes PR26883.
llvm-svn: 263325
commit ae14bf6488e8441f0f6d74f00455555f6f3943ac
Author: Mehdi Amini <mehdi.amini@apple.com>
Date: Fri Mar 11 17:15:50 2016 +0000
Remove PreserveNames template parameter from IRBuilder
Summary:
Following r263086, we are now relying on a flag on the Context to
discard Value names in release builds.
Reviewers: chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18023
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263258
91177308-0d34-0410-b5e6-96231b3b80d8
until we can figure out what to do about clang and Release build testing.
This reverts commit 263258.
llvm-svn: 263321
Summary: As we now have unit-tests for UnrollAnalyzer, we can convert some existing tests to this format. It should make the tests more robust.
Reviewers: chandlerc, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17904
llvm-svn: 263318
Summary:
Caller can provides the list of .so files where some files are
unreadable (e.g linux-vdso.so.1). It's more convenient to handler this in
sancov with warning then making all callers to check files.
Reviewers: aizatsky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18103
llvm-svn: 263307
Improve vector extension of vectors on hardware without dedicated VSEXT/VZEXT instructions.
We already convert these to SIGN_EXTEND_VECTOR_INREG/ZERO_EXTEND_VECTOR_INREG but can further improve this by using the legalizer instead of prematurely splitting into legal vectors in the combine as this only properly helps for lowering to VSEXT/VZEXT.
Removes a lot of unnecessary any_extend + mask pattern - (Fix for PR25718).
Differential Revision: http://reviews.llvm.org/D17932
llvm-svn: 263303
Summary:
This intrinsic, together with deoptimization operand bundles, allow
frontends to express transfer of control and frame-local state from
one (typically more specialized, hence faster) version of a function
into another (typically more generic, hence slower) version.
In languages with a fully integrated managed runtime this intrinsic can
be used to implement "uncommon trap" like functionality. In unmanaged
languages like C and C++, this intrinsic can be used to represent the
slow paths of specialized functions.
Note: this change does not address how `@llvm.experimental_deoptimize`
is lowered. That will be done in a later change.
Reviewers: chandlerc, rnk, atrick, reames
Subscribers: llvm-commits, kmod, mjacob, maksfb, mcrosier, JosephTremoulet
Differential Revision: http://reviews.llvm.org/D17732
llvm-svn: 263281
Value profile instrumentation treats inline asm calls like they are
indirect calls. This causes problems when the 'Callee' is passed to a
ptrtoint cast -- the verifier rightly claims that this is bogus and
crashes opt.
llvm-svn: 263278