Add a '-y count' option to the test driver for this purpose. An example:
$ ./dotest.py -v -y 25 +b -p TestDisassembly.py
...
----------------------------------------------------------------------
Collected 2 tests
1: test_run_gdb_then_lldb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
gdb benchmark: Avg: 0.226305 (Laps: 25, Total Elapsed Time: 5.657614)
lldb benchmark: Avg: 0.113864 (Laps: 25, Total Elapsed Time: 2.846606)
lldb_avg/gdb_avg: 0.503146
ok
2: test_run_lldb_then_gdb (TestDisassembly.DisassembleDriverMainLoop)
Test disassembly on a large function with lldb vs. gdb. ...
lldb benchmark: Avg: 0.113008 (Laps: 25, Total Elapsed Time: 2.825201)
gdb benchmark: Avg: 0.225240 (Laps: 25, Total Elapsed Time: 5.631001)
lldb_avg/gdb_avg: 0.501723
ok
----------------------------------------------------------------------
Ran 2 tests in 41.346s
OK
llvm-svn: 142598
for the debugger to execute for certain kind of tests (for example, a benchmark).
A list of runhooks can be used to steer the debugger into the desired state before more
actions can be performed.
llvm-svn: 141626
and the breakpoint specification for the benchmark purpose. This is used by TestSteppingSpeed.py
to benchmark the lldb stepping speed. Without '-e' and 'x' specified, the test defaults to
run the built lldb against itself and stopped on Driver::MainLoop, then stepping for 50 times.
rdar://problem/7511193
llvm-svn: 141584
built locally from the source tree. This is distinguished from self.lldbExec, which
can be used by test/benchmarks to measure the performances against other debuggers.
You can use environment variable LLDB_EXEC to specify self.lldbExec to the dotest.py
test driver, otherwise it is going to be populated with self.lldbHere.
Modify the regular tests under test dir, i.e., not test/benchmarks, to use self.lldbHere.
Also modify the benchmarks tests to use self.lldbHere when it needs an 'lldb' executable
with debug info to do the performance measurements.
llvm-svn: 138608
There should be nothing unwanted there and a simpe main.cpp (generated from main.cpp.template)
which includes SB*.h should compile and link with the LLDB framework.
llvm-svn: 136894
The test driver now takes an option "+b" which enables to run just the benchmarks tests.
By default, tests decorated with the @benchmarks_test decorator do not get run.
Add an example benchmarks test directory which contains nothing for the time being,
just to demonstrate the @benchmarks_test concept.
For example,
$ ./dotest.py -v benchmarks
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_gdb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with gdb. ... skipped 'benchmarks tests'
2: test_with_lldb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with lldb. ... skipped 'benchmarks tests'
----------------------------------------------------------------------
Ran 2 tests in 0.047s
OK (skipped=2)
$ ./dotest.py -v +b benchmarks
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_gdb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with gdb. ... running test_with_gdb
benchmarks result for test_with_gdb
ok
2: test_with_lldb (TestRepeatedExprs.RepeatedExprssCase)
Test repeated expressions with lldb. ... running test_with_lldb
benchmarks result for test_with_lldb
ok
----------------------------------------------------------------------
Ran 2 tests in 0.270s
OK
Also mark some Python API tests which are missing the @python_api_test decorator.
llvm-svn: 136553
to find out the tests which failed/errored and need re-running. The dotest.py test driver
script is modified to allow specifying multiple -f testclass.testmethod in the command line
to accommodate the redo functionality.
An example,
$ ./redo.py -n 2011-07-29-11_50_14
adding filterspec: TargetAPITestCase.test_find_global_variables_with_dwarf
adding filterspec: DisasmAPITestCase.test_with_dsym
Running ./dotest.py -v -f TargetAPITestCase.test_find_global_variables_with_dwarf -f DisasmAPITestCase.test_with_dsym
...
----------------------------------------------------------------------
Collected 2 tests
1: test_with_dsym (TestDisasmAPI.DisasmAPITestCase)
Exercise getting SBAddress objects, disassembly, and SBAddress APIs. ... ok
2: test_find_global_variables_with_dwarf (TestTargetAPI.TargetAPITestCase)
Exercise SBTarget.FindGlobalVariables() API. ... ok
----------------------------------------------------------------------
Ran 2 tests in 15.328s
OK
llvm-svn: 136533
the CommandInterpreter where it was always being used.
Make sure that Modules can track their object file offsets correctly to
allow opening of sub object files (like the "__commpage" on darwin).
Modified the Platforms to be able to launch processes. The first part of this
move is the platform soon will become the entity that launches your program
and when it does, it uses a new ProcessLaunchInfo class which encapsulates
all process launching settings. This simplifies the internal APIs needed for
launching. I want to slowly phase out process launching from the process
classes, so for now we can still launch just as we used to, but eventually
the platform is the object that should do the launching.
Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able
to launch processes with all of the new eLaunchFlag settings. Modified any
code that was manually launching processes to use the Host::LaunchProcess
functions.
Fixed an issue where lldb_private::Args had implicitly defined copy
constructors that could do the wrong thing. This has now been fixed by adding
an appropriate copy constructor and assignment operator.
Make sure we don't add empty ModuleSP entries to a module list.
Fixed the commpage module creation on MacOSX, but we still need to train
the MacOSX dynamic loader to not get rid of it when it doesn't have an entry
in the all image infos.
Abstracted many more calls from in ProcessGDBRemote down into the
GDBRemoteCommunicationClient subclass to make the classes cleaner and more
efficient.
Fixed the default iOS ARM register context to be correct and also added support
for targets that don't support the qThreadStopInfo packet by selecting the
current thread (only if needed) and then sending a stop reply packet.
Debugserver can now start up with a --unix-socket (-u for short) and can
then bind to port zero and send the port it bound to to a listening process
on the other end. This allows the GDB remote platform to spawn new GDB server
instances (debugserver) to allow platform debugging.
llvm-svn: 129351
on the command line. For example, use '-A x86_64^i386' to launch the inferior use both x86_64
and i386.
This is an example of building the debuggee using both clang and gcc compiers:
[17:30:46] johnny:/Volumes/data/lldb/svn/trunk/test $ ./dotest.py -C clang^gcc -v -f SourceManagerTestCase.test_modify_source_file_while_debugging
Session logs for test failures/errors will go into directory '2011-03-03-17_31_39'
Command invoked: python ./dotest.py -C clang^gcc -v -f SourceManagerTestCase.test_modify_source_file_while_debugging
Configuration: compiler=clang
----------------------------------------------------------------------
Collected 1 test
1: test_modify_source_file_while_debugging (TestSourceManager.SourceManagerTestCase)
Modify a source file while debugging the executable. ... Command 'run' failed!
original content: #include <stdio.h>
int main(int argc, char const *argv[]) {
printf("Hello world.\n"); // Set break point at this line.
return 0;
}
new content: #include <stdio.h>
int main(int argc, char const *argv[]) {
printf("Hello lldb.\n"); // Set break point at this line.
return 0;
}
os.path.getmtime() after writing new content: 1299202305.0
content restored to: #include <stdio.h>
int main(int argc, char const *argv[]) {
printf("Hello world.\n"); // Set break point at this line.
return 0;
}
os.path.getmtime() after restore: 1299202307.0
ok
----------------------------------------------------------------------
Ran 1 test in 8.259s
OK
Configuration: compiler=gcc
----------------------------------------------------------------------
Collected 1 test
1: test_modify_source_file_while_debugging (TestSourceManager.SourceManagerTestCase)
Modify a source file while debugging the executable. ... original content: #include <stdio.h>
int main(int argc, char const *argv[]) {
printf("Hello world.\n"); // Set break point at this line.
return 0;
}
new content: #include <stdio.h>
int main(int argc, char const *argv[]) {
printf("Hello lldb.\n"); // Set break point at this line.
return 0;
}
os.path.getmtime() after writing new content: 1299202307.0
content restored to: #include <stdio.h>
int main(int argc, char const *argv[]) {
printf("Hello world.\n"); // Set break point at this line.
return 0;
}
os.path.getmtime() after restore: 1299202309.0
ok
----------------------------------------------------------------------
Ran 1 test in 2.301s
OK
[17:31:49] johnny:/Volumes/data/lldb/svn/trunk/test $
llvm-svn: 126979
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple
to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
core we are dealing with into a single enumeration. If you need support for
a new Core and want to debug it in LLDB, it must be added to this list. In
the future we can allow for dynamic core registration, but for now it is
hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
The mach-o cpu type and subtype can be accessed using the getter functions:
uint32_t
ArchSpec::GetMachOCPUType () const;
uint32_t
ArchSpec::GetMachOCPUSubType () const;
But these functions are just converting out internal llvm::Triple::ArchSpec
+ ArchSpec::Core back into mach-o. Same goes for ELF.
All code has been updated to deal with the changes.
This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.
llvm-svn: 126278
module.
On my MBP running SnowLeopard:
$ DOTEST_PROFILE=YES DOTEST_SCRIPT_DIR=/Volumes/data/lldb/svn/trunk/test /System/Library/Frameworks/Python.framework/Versions/Current/lib/python2.6/cProfile.py -o my.profile ./dotest.py -v -w 2> ~/Developer/Log/lldbtest.log
After that, I used the pstats.py module to browse the statistics recorded in the my.profile file.
llvm-svn: 123807
Add an attribute __python_api_test__ (set to True) to the @python_api_test decorated
test method to distinguish them from the lldb command line tests.
llvm-svn: 121500
Example:
@python_api_test
def test_evaluate_expression_python(self):
"""Test SBFrame.EvaluateExpression() API for evaluating an expression."""
...
The opposite of Python APIs only test is an lldb command line test, which sends
commands to the lldb command interpreter. Add a '-a' option to the test driver
to skip Python API only tests.
Modify TestExprs.py to mark a test as @python_api_test and remove an @expectedFailure
decorator as the bug has been fixed.
llvm-svn: 121442
as the args and the envs to the launched process.
o lldbtest.py:
Forgot to check in some assertion messages changes for lldbtest.py.
o dotest.py:
Also add "api" category to the default lldb log option list.
llvm-svn: 121220