We now print ST0 as 'st' when generating the clobber list for MS inline assembly in clang. This matches what the gcc reg name list expects.
Original commit message:
This fixes the test case in PR35982 by preventing MMX instructions that read MM0-7 from being moved below EMMS/FEMMS by the post RA scheduler.
Though as discussed in bugzilla, this is not a complete fix. There is still the possibility of reordering in IR or by the pre-RA scheduler.
Differential Revision: https://reviews.llvm.org/D57298
llvm-svn: 353016
This fixes the test case in PR35982 by preventing MMX instructions that read MM0-7 from being moved below EMMS/FEMMS by the post RA scheduler.
Though as discussed in bugzilla, this is not a complete fix. There is still the possibility of reordering in IR or by the pre-RA scheduler.
Differential Revision: https://reviews.llvm.org/D57298
llvm-svn: 352660
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Currently we hardcode instructions with ReadAfterLd if the register operands don't need to be available until the folded load has completed. This doesn't take into account the different load latencies of different memory operands (PR36957).
This patch adds a ReadAfterFold def into X86FoldableSchedWrite to replace ReadAfterLd, allowing us to specify the load latency at a scheduler class level.
I've added ReadAfterVec*Ld classes that match the XMM/Scl, XMM and YMM/ZMM WriteVecLoad classes that we currently use, we can tweak these values in future patches once this infrastructure is in place.
Differential Revision: https://reviews.llvm.org/D52886
llvm-svn: 343868
A lot of the models still have too many InstRW overrides for these new classes - this needs cleaning up but I wanted to get the classes in first
llvm-svn: 332451
Summary:
This patch makes the decoder understand old AMD 3DNow!
instructions that have never been properly supported in the X86
disassembler, despite being supported in other subsystems. Hopefully
this should make the X86 decoder more complete with respect to binaries
containing legacy code.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits, maksfb, bruno
Differential Revision: https://reviews.llvm.org/D43311
llvm-svn: 325295
We only tagged it with the itinerary class, so completeness checks were erroneously passed (PR35639).
AMD targets can perform these a lot quicker than WriteMicrocoded so will need an override in the models.
llvm-svn: 324897
Previously prefetch was only considered legal if sse was enabled, but it should be supported with 3dnow as well.
The prfchw flag now imply at least some form of prefetch without the write hint is available, either the sse or 3dnow version. This is true even if 3dnow and sse are explicitly disabled.
Similarly prefetchwt1 feature implies availability of prefetchw and the the prefetcht0/1/2/nta instructions. This way we can support _MM_HINT_ET0 using prefetchw and _MM_HINT_ET1 with prefetchwt1. And its assumed that if we have levels for the write hint we would have levels for the non-write hint, thus why we enable the sse prefetch instructions.
I believe this behavior is consistent with gcc. I've updated the prefetch.ll to test all of these combinations.
llvm-svn: 321335
else in X86), and add support for pavgusb. This is apparently the
only instruction (other than movsx) that is preventing ffmpeg from building
with clang.
If someone else is interested in banging out the rest of the 3DNow!
instructions, it should be quite easy now.
llvm-svn: 115466