as long as their uses does not contain calls to functions that capture
the argument (potentially allowing the blockaddress to "escape" the
lifetime of the caller).
TODO:
- add more tests
- fix crash in llvm::updateCGAndAnalysisManagerForFunctionPass when
invoking Transforms/Inline/blockaddress.ll
llvm-svn: 354079
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Instruction::isLifetimeStartOrEnd() checks whether an Instruction is an
llvm.lifetime.start or an llvm.lifetime.end intrinsic.
This was suggested as a cleanup in D55967.
Differential Revision: https://reviews.llvm.org/D56019
llvm-svn: 349964
Add methods to BasicBlock which make it easier to efficiently check
whether a block has N (or more) predecessors.
This can be more efficient than using pred_size(), which is a linear
time operation.
We might consider adding similar methods for successors. I haven't done
so in this patch because succ_size() is already O(1).
With this patch applied, I measured a 0.065% compile-time reduction in
user time for running `opt -O3` on the sqlite3 amalgamation (30 trials).
The change in mergeStoreIntoSuccessor alone saves 45 million linked list
iterations in a stage2 Release build of llc.
See llvm.org/PR39702 for a harder but more general way of achieving
similar results.
Differential Revision: https://reviews.llvm.org/D54686
llvm-svn: 347256
This removes the primary remaining API producing `TerminatorInst` which
will reduce the rate at which code is introduced trying to use it and
generally make it much easier to remove the remaining APIs across the
codebase.
Also clean up some of the stragglers that the previous mechanical update
of variables missed.
Users of LLVM and out-of-tree code generally will need to update any
explicit variable types to handle this. Replacing `TerminatorInst` with
`Instruction` (or `auto`) almost always works. Most of these edits were
made in prior commits using the perl one-liner:
```
perl -i -ple 's/TerminatorInst(\b.* = .*getTerminator\(\))/Instruction\1/g'
```
This also my break some rare use cases where people overload for both
`Instruction` and `TerminatorInst`, but these should be easily fixed by
removing the `TerminatorInst` overload.
llvm-svn: 344504
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
`isExceptionalTermiantor` and implement it for opcodes as well following
the common pattern in `Instruction`.
Part of removing `TerminatorInst` from the `Instruction` type hierarchy
to make it easier to share logic and interfaces between instructions
that are both terminators and not terminators.
llvm-svn: 340699
The core get and set routines move to the `Instruction` class. These
routines are only valid to call on instructions which are terminators.
The iterator and *generic* range based access move to `CFG.h` where all
the other generic successor and predecessor access lives. While moving
the iterator here, simplify it using the iterator utilities LLVM
provides and updates coding style as much as reasonable. The APIs remain
pointer-heavy when they could better use references, and retain the odd
behavior of `operator*` and `operator->` that is common in LLVM
iterators. Adjusting this API, if desired, should be a follow-up step.
Non-generic range iteration is added for the two instructions where
there is an especially easy mechanism and where there was code
attempting to use the range accessor from a specific subclass:
`indirectbr` and `br`. In both cases, the successors are contiguous
operands and can be easily iterated via the operand list.
This is the first major patch in removing the `TerminatorInst` type from
the IR's instruction type hierarchy. This change was discussed in an RFC
here and was pretty clearly positive:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123407.html
There will be a series of much more mechanical changes following this
one to complete this move.
Differential Revision: https://reviews.llvm.org/D47467
llvm-svn: 340698
This addresses post-commit feedback about the name 'skipDebugInfo' being
misleading. This name could be interpreted as meaning 'a function that
skips instructions with debug locations'.
The new name, 'skipDebugIntrinsics', makes it clear that this function
only skips debug info intrinsics.
Thanks to Adrian Prantl for pointing this out!
llvm-svn: 335667
This patch introduces two helpers to make it easier to ignore debug
intrinsics:
- Instruction::getNextNonDebugInstruction()
This is just like Instruction::getNextNode(), except that it skips debug
info.
- skipDebugInfo(BasicBlock::iterator)
A free function which advances a BasicBlock iterator past any debug
info. This is a no-op when the iterator already points to a non-debug
instruction.
Part of: llvm.org/PR37728
Related to: https://reviews.llvm.org/D47874
Differential Revision: https://reviews.llvm.org/D48305
llvm-svn: 335083
Summary:
Currently the block frequency analysis is an approximation for irreducible
loops.
The new irreducible loop metadata is used to annotate the irreducible loop
headers with their header weights based on the PGO profile (currently this is
approximated to be evenly weighted) and to help improve the accuracy of the
block frequency analysis for irreducible loops.
This patch is a basic support for this.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: mehdi_amini, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39028
llvm-svn: 317278
block.
This allows writing much more natural and readable range based for loops
directly over the PHI nodes. It also takes advantage of the same tricks
for terminating the sequence as the hand coded versions.
I've replaced one example of this mostly to showcase the difference and
I've added a unit test to make sure the facilities really work the way
they're intended. I want to use this inside of SimpleLoopUnswitch but it
seems generally nice.
Differential Revision: https://reviews.llvm.org/D33533
llvm-svn: 303964
Summary:
During post-commit review of a previous change I made it was pointed out that const casting 'this' is technically a bad practice. This patch re-implements all of the methods in BasicBlock that do this to use the const BasicBlock version and const_cast the return value instead.
I think there are still many other classes that do similar things. I may look at more in the future.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31377
llvm-svn: 298827
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
Make it possible that TryToSimplifyUncondBranchFromEmptyBlock merges empty
basic block including lifetime intrinsics as well as phi nodes and
unconditional branch into its successor or predecessor(s).
If successor of empty block has single predecessor, all contents including
lifetime intrinsics are sinked into the successor. Otherwise, they are
hoisted into its predecessor(s) and then merged into the predecessor(s).
Patch by Josh Yoon <josh.yoon@samsung.com>!
Differential Revision: http://reviews.llvm.org/D19257
llvm-svn: 268254
Summary:
This intrinsic, together with deoptimization operand bundles, allow
frontends to express transfer of control and frame-local state from
one (typically more specialized, hence faster) version of a function
into another (typically more generic, hence slower) version.
In languages with a fully integrated managed runtime this intrinsic can
be used to implement "uncommon trap" like functionality. In unmanaged
languages like C and C++, this intrinsic can be used to represent the
slow paths of specialized functions.
Note: this change does not address how `@llvm.experimental_deoptimize`
is lowered. That will be done in a later change.
Reviewers: chandlerc, rnk, atrick, reames
Subscribers: llvm-commits, kmod, mjacob, maksfb, mcrosier, JosephTremoulet
Differential Revision: http://reviews.llvm.org/D17732
llvm-svn: 263281
Stop using `getNodePtrUnchecked()` when building IR. Eventually a
dereference will be required to get at the downcast node, since the
iterator will only store an `ilist_node_base` of some sort.
This should have no functionality change for now, but is a path towards
removing some more UB from ilist.
llvm-svn: 261495
Stop converting implicitly between iterators and pointers/references in
lib/IR. For convenience, I've added a `getIterator()` accessor to
`ilist_node` so that callers don't need to know how to spell the
iterator class (i.e., they can use `X.getIterator()` instead of
`Function::iterator(X)`).
I'll eventually disallow these implicit conversions entirely, but
there's a lot of code, so it doesn't make sense to do it all in one
patch. One library or so at a time.
Why? To root out cases of `getNextNode()` and `getPrevNode()` being
used in iterator logic. The design of `ilist` makes that invalid when
the current node could be at the back of the list, but it happens to
"work" right now because of a bug where those functions never return
`nullptr` if you're using a half-node sentinel. Before I can fix the
function, I have to remove uses of it that rely on it misbehaving.
(Maybe the function should just be deleted anyway? But I don't want
deleting it -- potentially a huge project -- to block fixing
ilist/iplist.)
llvm-svn: 249782
Create `SymbolTableList`, a wrapper around `iplist` for lists that
automatically manage a symbol table. This commit reduces a ton of code
duplication between the six traits classes that were used previously.
As a drive by, reduce the number of template parameters from 2 to 1 by
using a SymbolTableListParentType metafunction (I originally had this as
a separate commit, but it touched most of the same lines so I squashed
them).
I'm in the process of trying to remove the UB in `createSentinel()` (see
the FIXMEs I added for `ilist_embedded_sentinel_traits` and
`ilist_half_embedded_sentinel_traits`). My eventual goal is to separate
the list logic into a base class layer that knows nothing about (and
isn't templated on) the downcasted nodes -- removing the need to invoke
UB -- but for now I'm just trying to get a handle on all the current use
cases (and cleaning things up as I see them).
Besides these six SymbolTable lists, there are two others that use the
addNode/removeNode/transferNodes() hooks: the `MachineInstruction` and
`MachineBasicBlock` lists. Ideally there'll be a way to factor these
hooks out of the low-level API entirely, but I'm not quite there yet.
llvm-svn: 249602
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
This reverts commit r241602. We had a latent bug in SCCP where we would
make a basic block empty and then proceed to ask questions about it's
terminator.
llvm-svn: 241616
getFirstNonPHI's documentation states that it returns null if there is
no non-PHI instruction. However, it instead returns a pointer to the
end iterator. The implementation of getFirstNonPHI claims that
dereferencing the iterator will result in an assertion failure but this
doesn't occur. Instead, machinery like getFirstInsertionPt will attempt
to isa<> this invalid memory which results in unpredictable behavior.
Instead, make getFirst* return null if no such instruction exists.
llvm-svn: 241570
This improves debug locations in passes that do a lot of basic block
transformations. Important case is LoopUnroll pass, the test for correct
debug locations accompanies this change.
Test Plan: regression test suite
Reviewers: dblaikie, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10367
llvm-svn: 239551
While working on another change, I noticed that the naming in this function was mildly deceptive. While fixing that, I took the oppurtunity to modernize some of the code. NFC intended.
llvm-svn: 238252
Summary:
This is a pass for speculative execution of instructions for simple if-then (triangle) control flow. It's aimed at GPUs, but could perhaps be used in other contexts. Enabling this pass gives us a 1.0% geomean improvement on Google benchmark suites, with one benchmark improving 33%.
Credit goes to Jingyue Wu for writing an earlier version of this pass.
Patched by Bjarke Roune.
Test Plan:
This patch adds a set of tests in test/Transforms/SpeculativeExecution/spec.ll
The pass is controlled by a flag which defaults to having the pass not run.
Reviewers: eliben, dberlin, meheff, jingyue, hfinkel
Reviewed By: jingyue, hfinkel
Subscribers: majnemer, jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9360
llvm-svn: 237459
Summary:
Same as the last patch, but for BasicBlock
(Requires same code movement)
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8801
llvm-svn: 233992
Summary:
This does not conceptually belongs here. Instead provide a shortcut
getModule() that provides access to the DataLayout.
Reviewers: chandlerc, echristo
Reviewed By: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8027
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231147
This pass is responsible for figuring out where to place call safepoints and safepoint polls. It doesn't actually make the relocations explicit; that's the job of the RewriteStatepointsForGC pass (http://reviews.llvm.org/D6975).
Note that this code is not yet finalized. Its moving in tree for incremental development, but further cleanup is needed and will happen over the next few days. It is not yet part of the standard pass order.
Planned changes in the near future:
- I plan on restructuring the statepoint rewrite to use the functions add to the IRBuilder a while back.
- In the current pass, the function "gc.safepoint_poll" is treated specially but is not an intrinsic. I plan to make identifying the poll function a property of the GCStrategy at some point in the near future.
- As follow on patches, I will be separating a collection of test cases we have out of tree and submitting them upstream.
- It's not explicit in the code, but these two patches are introducing a new state for a statepoint which looks a lot like a patchpoint. There's no a transient form which doesn't yet have the relocations explicitly represented, but does prevent reordering of memory operations. Once this is in, I need to update actually make this explicit by reserving the 'unused' argument of the statepoint as a flag, updating the docs, and making the code explicitly check for such a thing. This wasn't really planned, but once I split the two passes - which was done for other reasons - the intermediate state fell out. Just reminds us once again that we need to merge statepoints and patchpoints at some point in the not that distant future.
Future directions planned:
- Identifying more cases where a backedge safepoint isn't required to ensure timely execution of a safepoint poll.
- Tweaking the insertion process to generate easier to optimize IR. (For example, investigating making SplitBackedge) the default.
- Adding opt-in flags for a GCStrategy to use this pass. Once done, add this pass to the actual pass ordering.
Differential Revision: http://reviews.llvm.org/D6981
llvm-svn: 228090
No functional change. To be used in future commits that need to look
for such instructions.
Reviewed By: rafael
Differential Revision: http://reviews.llvm.org/D4504
llvm-svn: 215413
Although unlinked `BasicBlock`s can be created, there's currently no way
to insert them into `Function`s after the fact. In particular,
`moveAfter()` and `moveBefore()` require that the basic block is already
linked.
Extract the logic for initially linking a `BasicBlock` out of the
constructor and into a member function that can be used for lazy
insertion.
- Asserts that the basic block is currently unlinked.
- Matches the logic of the constructor.
- Changed the constructor to use it since the logic matches.
This is needed in a follow-up commit for PR5680.
llvm-svn: 214563
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474