These tests fail if you build without the x86 llvm backend.
Either because they use an x86 triple or try to backtrace which
requires some x86 knowledge to see all frames.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D100194
The original commit was reverted because of the problems it introduced
on Linux. However, FreeBSD should not be affected, so restore that part
and we will address Linux separately.
While at it, remove the dbreg hack as the underlying issue has been
fixed in the FreeBSD kernel and the problem is unlikely to happen
in real life use anyway.
Differential Revision: https://reviews.llvm.org/D98822
`%flang-new` was introduced in the early days of the new driver to make
a clear distinction between the tests for the current and the new
driver. We have since introduced `%flang` (compiler driver) and
`%flang_fc1` (frontend driver) as the long term solution. This has allowed
us to share tests between `flang-new` and `f18`. This patch replaces
all uses of `%flang-new` with `%flang` and `%flang_fc1`.
Some tests are reformatted so that all tests look uniform and are easier
to follow. Where possible, `! REQUIRES: new-flang-driver` is deleted so
that more tests can be shared with `f18`. To facilitate this,
`f{no-}implicit-none` are introduced in `f18` with semantics identical
to `flang-new`.
Two tests are deleted rather than updated:
* flang/test/Frontend/print-preprocess-C-file.f90
* flang/test/Frontend/print-preprocessed-file.f90
Instead, there is plenty of preprocessor tests in
flang/test/Preprocessing/.
Differential Revision: https://reviews.llvm.org/D100174
Clang currently has a bug where it allows you to write [[foo bar]] and
both attributes are silently accepted. This patch corrects the comma
parsing rules for such attributes and handles the test case fallout, as
a few tests were accidentally doing this.
The existing Windows Itanium patches for dllimport/export
behaviour w.r.t vtables/rtti can't be adopted for PS4 due to
backwards compatibility reasons (see comments on
https://reviews.llvm.org/D90299).
This commit adds our PS4 scheme for this to Clang.
Differential Revision: https://reviews.llvm.org/D93203
Refactor handling qSupported to use a virtual HandleFeatures() method.
The client-provided features are split into an array and passed
to the method. The method returns an array of server features that are
concatenated into the qSupported response to the server.
The base implementation of HandleFeatures()
in GDBRemoteCommunicationServerCommon now includes only flags common
to both platform server and llgs, while llgs-specific flags are inserted
in GDBRemoteCommunicationServerLLGS.
Differential Revision: https://reviews.llvm.org/D100140
With the typo ($S instead of %s), the driver was expecting
input from stdin. In such cases, it prints:
```
Enter Fortran source
Use EOF character (^D) to end file
```
This was piped to FileCheck. Together with the available `CHECK-NOT`
statement, this was sufficient for the test to pass (incorrectly).
This patch makes sure that the provided input file is used instead of
stdin.
Differential Revision: https://reviews.llvm.org/D100301
This patch changes the builtin prototype to use 'b' (boolean) instead
of the default integer element type. That fixes the dup/dupq intrinsics
when compiling with C++.
This patch also fixes one of the defines for __ARM_FEATURE_SVE2_BITPERM.
Reviewed By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D100294
As a side-effect of the change to default HoistCommonInsts to false
early in the pipeline, we fail to convert conditional branch & phis to
selects early on, which prevents vectorization for loops that contain
conditional branches that effectively are selects (or if the loop gets
vectorized, it will get vectorized very inefficiently).
This patch updates SimplifyCFG to perform hoisting if the only
instruction in both BBs is an equal branch. In this case, the only
additional instructions are selects for phis, which should be cheap.
Even though we perform hoisting, the benefits of this kind of hoisting
should by far outweigh the negatives.
For example, the loop in the code below will not get vectorized on
AArch64 with the current default, but will with the patch. This is a
fundamental pattern we should definitely vectorize. Besides that, I
think the select variants should be easier to use for reasoning across
other passes as well.
https://clang.godbolt.org/z/sbjd8Wshx
```
double clamp(double v) {
if (v < 0.0)
return 0.0;
if (v > 6.0)
return 6.0;
return v;
}
void loop(double* X, double *Y) {
for (unsigned i = 0; i < 20000; i++) {
X[i] = clamp(Y[i]);
}
}
```
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100329
Refactor the qSupported handler to split the reply into an array,
and identify features within the array rather than searching the string
for partial matches. While at it, use StringRef.split() to process
the compression list instead of reinventing the wheel.
Switch the arguments to MaybeEnableCompression() to use an ArrayRef
of StringRefs to simplify parameter passing from GetRemoteQSupported().
Differential Revision: https://reviews.llvm.org/D100146
The patch extends the linalg to loop lowering pass to replace all linalg index operations by the induction variables of the generated loop nests.
Differential Revision: https://reviews.llvm.org/D100364
This commit has caused the following tests to be flaky:
TestThreadSpecificBpPlusCondition.py
TestExitDuringExpression.py
The exact cause is not known yet, but since both tests deal with
threads, my guess is it has something to do with the tracking of
creation of new threads (which the commit touches upon).
This reverts the following commits:
d01bff8cbd,
ba62ebc48e,
e761b6b4c5,
a345419ee0.
The core file used is built for i386 so we
need the x86 backend to be able to load it.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D100195
Previously the test would fail if you built on Arm/AArch64
but did not have the x86 llvm backend enabled.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D100192
By moving them into a folder with a local lit config
requiring x86. All these tests use x86 target triples.
There are two tests that require target-x86_64 because
they run program files (instead of just needing the backend).
Those are moved to the x86 folder also but their REQUIRES are
unchanged.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D100193
This is a work-in-progress implementation of an assembler for M68k.
Outstanding work:
- Updating existing tests assembly syntax
- Writing new tests for the assembler (and disassembler)
I've left those until there's consensus that this approach is okay (I hope that's okay!).
Questions I'm aware of:
- Should this use Motorola or gas syntax? (At the moment it uses Motorola syntax.)
- The disassembler produces a table at runtime for disassembly generated from the code beads. Is this okay? (This is less than ideal but as I mentioned in my llvm-dev post, it's quite complicated to write a table-gen parser for code beads.)
Depends on D98519
Depends on D98532
Depends on D98534
Depends on D98535
Depends on D98536
Differential Revision: https://reviews.llvm.org/D98537
In all this time, we've never used more than one delegate. The logic to
support multiple delegates is therefore untested, and becomes
particularly unwieldy once we need to support multiple processes.
Just remove it.
This patch introduces the neccessary infrastructure changes to implement
cost-modelling for detensoring. In particular, it introduces the
following changes:
- An extension to the dialect conversion framework to selectively
convert sub-set of non-entry BB arguments.
- An extension to branch conversion pattern to selectively convert
sub-set of a branche's operands.
- An interface for detensoring cost-modelling.
- 2 simple implementations of 2 different cost models.
This sets the stage to explose cost-modelling for detessoring in an
easier way. We still need to come up with better cost models.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D99945
This test was disabled despite the instruction having been implemented for a
long time. This commit just enables the test.
Differential Revision: https://reviews.llvm.org/D100345
Prep work for adding intrinsics in the future.
Left an assert that the input is constant in ReplaceNodeResults,
as the intrinsic shouldn't go through that path.
We should consider the feeder user number when we do reverse memory
operation transformation. Otherwise, we may get negative impact.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D100166
Depends On D95311
Previous automatic-ref-counting pass worked with high level async operations (e.g. async.execute), however async values reference counting is a runtime implementation detail.
New pass mostly relies on the save liveness analysis to place drop_ref operations, and does better verification of CFG with different liveIn sets in block successors.
This is almost NFC change. No new reference counting ideas, just a cleanup of the previous version.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D95390
This is similar to the definition of llvm.switch, providing
unstructured branch-based control flow. It differs from the LLVM
operation in that it accepts any signless integer (not only an i32),
takes no branch weights (the same as the Branch and CondBranch ops),
and has a slightly different syntax for the default case that includes
it in the list of cases with an explicit `default` keyword.
Also included are several canonicalizers.
See https://llvm.discourse.group/t/rfc-add-std-switch-and-scf-switch/3090
Reviewed By: rriddle, bondhugula
Differential Revision: https://reviews.llvm.org/D99925