In the case that TLS is used in the single-threaded program, and
therefore effectively lowered away, we still optionally create a
`__tls_base` symbols, but the code for setting it was assuming it was
always created.
Differential Revision: https://reviews.llvm.org/D109518
llvm::errs() is unbuffered. On a POSIX platform, composing a diagnostic
string may invoke the ::write syscall multiple times, which can be slow.
Buffer writes to a temporary SmallString when composing a single diagnostic to
reduce the number of ::write syscalls to one (also easier to read under
strace/truss).
For an invocation of ld.lld with 62000+ lines of
`ld.lld: warning: symbol ordering file: no such symbol: ` warnings (D87121),
the buffering decreases the write time from 1s to 0.4s (for /dev/tty) and
from 0.4s to 0.1s (for a tmpfs file). This can speed up
`relocation R_X86_64_PC32 out of range` diagnostic printing as well
with `--noinhibit-exec --no-fatal-warnings`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D87272
Failing to do so results in `std::bad_function_call` being
thrown when a pass tries to emit a diagnostic.
I've copied the relevant test over from LLD-ELF's test suite.
Reviewed By: #lld-macho, thevinster
Differential Revision: https://reviews.llvm.org/D109274
We end up calling resolveBranchVA(), which asserts for Undefineds.
As fix, just return early in Writer::run() if there are any diagnostics
after processing relocations (which is where undefined symbol errors are
emitted). This matches what the ELF port does.
Differential Revision: https://reviews.llvm.org/D109079
Fixes PR51578 in practice.
Currently there's only enough room for a single thunk, which for real-life code
isn't enough. The error case only happens when there are many branch statements
very close to each other (0 or 1 instructions apart), with the function at the
finalization barrier small.
There's a FIXME on what to do if we hit this case, but that suggestion sounds
complicated to me (see end of PR51578 comment 5 for why).
Instead, just leave more room for thunks. Chromium's unit_tests links fine with
room for 3 thunks. Leave room for 100, which should fix this for most cases in
practice.
There's little cost for leaving lots of room: This slop value only determines
when we finalize sections, and we insert thunks for forward jumps into
unfinalized sections. So leaving room means we'll need a few more thunks, but
the thunk jump range is 128 MiB while a single thunk is just 12 bytes.
For Chromium's unit_tests:
With a slop of 3: thunk calls = 355418, thunks = 10903
With a slop of 100: thunk calls = 355426, thunks = 10904
Chances are 100 is enough for all use cases we'll hit in practice, but even
bumping it to 1000 would probably be fine.
Differential Revision: https://reviews.llvm.org/D108930
- Move a few variables closer to their uses, remove some completely
(no behavior change)
- Add some comments
- Make maxPotentialThunks include calls to stubs. It's possible that
an earlier call to a stub late in the stub table will need a thunk,
and that inserted thunk could push a stub earlier in the stub table
out of range. This is unlikely to happen, but usually there are
way fewer stub calls than non-stub calls, so if we're doing a
conservative approximation here we might as well do it correctly.
(For chromium's unit_tests target, 134421/242639 stub calls are
direct calls without this change, compared to 134408/242639 with
this change)
No real, meaningful behavior difference.
Differential Revision: https://reviews.llvm.org/D108924
- Don't subtract thunkSize from branchRange. Most places care about
the actual maximal branch range. Subtract thunkSize in the one place
that wants to leave room for a thunk.
- Set it to 0x800_0000 instead of 0xFF_FFFF
- Subtract 4 for the positive branch direction since it's a
two's complement 24bit number sign-extended mutiplied by 4,
so its range is -0x800_0000..+0x7FF_FFFC
- Make boundary checks include the boundary values
This doesn't make a huge difference in practice. It's preparation
for a "real" fix for PR51578 -- but it also lets the repro in comment 0
in that bug place one more thunk before hitting the TODO.
Differential Revision: https://reviews.llvm.org/D108897
The assert is harmless and thinks worked fine in builds with asserts enabled,
but it's still nice to fix the assert.
Differential Revision: https://reviews.llvm.org/D108853
We currently complain "could not open /LTCG: no such file or directory",
which isn't very useful. We could emit a warning when we see this flag, but
just ignoring it seems fine.
Final missing part of PR38799.
Differential Revision: https://reviews.llvm.org/D108799
This is what ld64 does. Deviating in behavior here can result
in some subtle duplicate symbol errors, as detailed in the objc.s test.
Differential Revision: https://reviews.llvm.org/D108781
The previous logic was duplicated between symbol-initiated
archive loads versus flag-initiated loads (i.e. `-force_load` and
`-ObjC`). This resulted in code duplication as well as redundant work --
we would create Archive instances twice whenever we had one of those
flags; once in `getArchiveMembers` and again when we constructed the
ArchiveFile.
This was motivated by an upcoming diff where we load archive members
containing ObjC-related symbols before loading those containing
ObjC-related sections, as well as before performing symbol resolution.
Without this refactor, it would be difficult to do that while avoiding
loading the same archive member twice.
Differential Revision: https://reviews.llvm.org/D108780
This was missed by {D107035}. This fix addresses the following warning:
loop variable 'personality' has type 'const uint32_t &' (aka 'const unsigned int &') but is initialized with type 'const unsigned long long' resulting in a copy [-Wrange-loop-analysis]
In addition to fixing the size, I also removed the const reference,
since there's no performance benefit to avoiding copies of integer-sized
values.
If multiple /manifestdependency: flags are passed, they are
naively deduped, but after that each of them should have an
effect, instead of just the last one.
Also, /manifestdependency: flags are allowed in .drectve sections
(from `#pragma comment(linker, ...`). To make the interaction between
/manifestdependency: flags enabling manifest by default but
/manifest:no overriding this work, add an explict ManifestKind::Default
state to represent no explicit /manifest flag being passed.
To make /manifestdependency: flags from input file .drectve sections
work with /manifest:embed, delay embedded manifest emission until
after input files have been read.
Differential Revision: https://reviews.llvm.org/D108628
This CL is small, but the description can be a little long because I'm
trying to sum up the status quo for Emscripten/Wasm EH/SjLj options.
First, this CL adds an option for Wasm SjLj (`-wasm-enable-sjlj`), which
handles SjLj using Wasm EH. The implementation for this will be added as
a followup CL, but this adds the option first to do error checking.
This also adds an option for Wasm EH (`-wasm-enable-eh`), which has been
already implemented. Before we used `-exception-model=wasm` as the same
meaning as enabling Wasm EH, but after we add Wasm SjLj, it will be
possible to use Wasm EH instructions for Wasm SjLj while not enabling
EH, so going forward, to use Wasm EH, `opt` and `llc` will need this
option. This only affects `opt` and `llc` command lines and does not
affect Emscripten user interface.
Now we have two modes of EH (Emscripten/Wasm) and also two modes of SjLj
(also Emscripten/Wasm). The options corresponding to each of are:
- Emscripten EH: `-enable-emscripten-cxx-exceptions`
- Emscripten SjLj: `-enable-emscripten-sjlj`
- Wasm EH: `-wasm-enable-eh -exception-model=wasm`
`-mattr=+exception-handling`
- Wasm SjLj: `-wasm-enable-sjlj -exception-model=wasm`
`-mattr=+exception-handling`
The reason Wasm EH/SjLj's options are a little complicated are
`-exception-model` and `-mattr` are common LLVM options ane not under
our control. (`-mattr` can be omitted if it is embedded within the
bitcode file.)
And we have the following rules of the option composition:
- Emscripten EH and Wasm EH cannot be turned on at the same itme
- Emscripten SjLj and Wasm SjLj cannot be turned on at the same time
- Wasm SjLj should be used with Wasm EH
Which means we now allow these combinations:
- Emscripten EH + Emscripten SjLj: the current default in `emcc`
- Wasm EH + Emscripten SjLj:
This is allowed, but only as an interim step in which we are testing
Wasm EH but not yet have a working implementation of Wasm SjLj. This
will error out (D107687) in compile time if `setjmp` is called in a
function in which Wasm exception is used.
- Wasm EH + Wasm SjLj:
This will be the default mode later when using Wasm EH. Currently Wasm
SjLj implementation doesn't exist, so it doesn't work.
- Emscripten EH + Wasm SjLj will not work.
This CL moves these error checking routines to
`WebAssemblyPassConfig::addIRPasses`. Not sure if this is an ideal place
to do this, but I couldn't find elsewhere. Currently some checking is
done within LowerEmscriptenEHSjLj, but these checks only run if
LowerEmscriptenEHSjLj runs so it may not run when Wasm EH is used. This
moves that to `addIRPasses` and adds some more checks.
Currently LowerEmscriptenEHSjLj pass is responsible for Emscripten EH
and Emscripten SjLj. Wasm EH transformations are done in multiple
places, including WasmEHPrepare, LateEHPrepare, and CFGStackify. But in
the followup CL, LowerEmscriptenEHSjLj pass will be also responsible for
a part of Wasm SjLj transformation, because WasmSjLj will also be using
several Emscripten library functions, and we will be sharing more than
half of the transformation to do that between Emscripten SjLj and Wasm
SjLj.
Currently we have `-enable-emscripten-cxx-exceptions` and
`-enable-emscripten-sjlj` but these only work for `llc`, because for
`llc` we feed these options to the pass but when we run the pass using
`opt` the pass will be created with no options and the default options
will be used, which turns both Emscripten EH and Emscripten SjLj on.
Now we have one more SjLj option to care for, LowerEmscriptenEHSjLj pass
needs a finer way to control these options. This CL removes those
default parameters and make LowerEmscriptenEHSjLj pass read directly
from command line options specified. So if we only run
`opt -wasm-lower-em-ehsjlj`, currently both Emscripten EH and Emscripten
SjLj will run, but with this CL, none will run unless we additionally
pass `-enable-emscripten-cxx-exceptions` or `-enable-emscripten-sjlj`,
or both. This does not affect users; this only affects our `opt` tests
because `emcc` will not call either `opt` or `llc`. As a result of this,
our existing Emscripten EH/SjLj tests gained one or both of those
options in their `RUN` lines.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D107685
In the case of weakly defined symbols in shared libraries we now
generate both an import and an export. The dynamic linker can then
choose how a winner from among all the shared libraries that define a
given symbol.
Previously any direct usage of a weakly defined symbol would use the
DSO-local definition (For example, even through there would be single
address for a weakly defined function, each DSO could end up directly
calling its local version).
Fixes: https://github.com/emscripten-core/emscripten/issues/13773
Differential Revision: https://reviews.llvm.org/D108413
In PIC mode we import function address via `GOT.mem` imports but for
direct function calls we still import the first class function.
However, if the function is never directly called we can avoid the first
class import completely.
Differential Revision: https://reviews.llvm.org/D108345
The convention is not to check the prefix before `error: `.
This gives flexibility if we need to rename ld64.lld to something else,
(e.g. a while ago we used ld64.lld.darwinnew).
Address post follow up comment in D108016. Avoid creating isec for
LLVM segments since we are skipping over it.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D108167
There was an instance of a third-party archive containing multiple
_llvm symbols from different files that clashed with each other
producing duplicate symbols. Symbols under the LLVM segment
don't seem to be producing any meaningful value, so just ignore them.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D108016
In e72403f96d, we added the flag
"--no-dynamicbase" for disabling the dynamicbase flag which we set
by default. At the time, ld.bfd didn't have any corresponding
option (as ld.bfd defaulted to not setting the flag). Almost at
the same time, corresponding options were added to ld.bfd for
disabling it (while it was being enabled by default), with a
different name, "--disable-dynamicbase".
Thus add the "--disable-dynamicbase" option. Make this default
one advertised in the help listing, but keep the "--no-dynamicbase"
form as an alias. Also improve checking for the last option set
if there are multiple ones on the same command line.
Also add corresponding disable options for a lot of other flags
that we set by default, also added in ld.bfd in the same commit:
https://sourceware.org/git/?p=binutils-gdb.git;a=commitdiff;h=514b4e191d5f46de8e142fe216e677a35fa9c4bb
Differential Revision: https://reviews.llvm.org/D107930
When enable CSPGO for ThinLTO, there are profile cfg mismatch warnings that will cause lld-link errors (with /WX)
due to source changes (e.g. `#if` code runs for profile generation but not for profile use)
To disable it we have to use an internal "/mllvm:-no-pgo-warn-mismatch" option.
In contrast clang uses option ”-Wno-backend-plugin“ to avoid such warnings and gcc has an explicit "-Wno-coverage-mismatch" option.
Add "lto-pgo-warn-mismatch" option to lld COFF/ELF to help turn on/off the profile mismatch warnings explicitly when build with ThinLTO and CSPGO.
Differential Revision: https://reviews.llvm.org/D104431
When enable CSPGO for ThinLTO, there are profile cfg mismatch warnings that will cause lld-link errors (with /WX).
To disable it we have to use an internal "/mllvm:-no-pgo-warn-mismatch" option.
In contrast clang uses option ”-Wno-backend-plugin“ to avoid such warnings and gcc has an explicit "-Wno-coverage-mismatch" option.
Add this "lto-pgo-warn-mismatch" option to lld to help turn on/off the profile mismatch warnings explicitly when build with ThinLTO and CSPGO.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D104431
Now that we have https://reviews.llvm.org/D105539 we can
use objdump -d to actually check for instruction sequences
rather than binary blobs.
This is just an example of how to do that we should followup
with a wider ranging conversion of existing tests.
Differential Revision: https://reviews.llvm.org/D106897
Clang diagnostics refer to identifier names in quotes.
This patch makes inline remarks conform to the convention.
New behavior:
```
% clang -O2 -Rpass=inline -Rpass-missed=inline -S a.c
a.c:4:25: remark: 'foo' inlined into 'bar' with (cost=-30, threshold=337) at callsite bar:0:25; [-Rpass=inline]
int bar(int a) { return foo(a); }
^
```
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D107791
This adds thin archives to the map file test.
I noticed that we had this test-case in our downstream
testsuite but it wasn't in the upstream testing.
Differential revision: https://reviews.llvm.org/D107555
This patch enables compressed input sections on big-endian targets by
checking the target endianness and selecting an appropriate `Chdr`
structure.
Fixes PR51369
Differential Revision: https://reviews.llvm.org/D107635
See: http://45.33.8.238/macm1/15677/step_10.txt
This is a test that has `REQUIRES: x86` which means it never ran
before; I don't have a MachO environment but based on the FileCheck
output it looks like it should be sufficient to remove one CHECK line.