treating it as if it were an IEEE floating-point type with 106-bit
mantissa.
This makes compile-time arithmetic on "long double" for PowerPC
in clang (in particular parsing of floating point constants)
work, and fixes all "long double" related failures in the test
suite.
llvm-svn: 166951
was returning incorrect values in rare cases, and incorrectly marking
exact conversions as inexact in some more common cases. Fixes PR11406, and a
missed optimization in test/CodeGen/X86/fp-stack-O0.ll.
llvm-svn: 145141
The APFloat "Zero" test was actually calling the
APFloat(const fltSemantics &, integerPart) constructor, and EXPECT_EQ was
treating 0 and -0 as equal.
llvm-svn: 138745
The idea is, that if an ieee 754 float is divided by a power of two, we can
turn the division into a cheaper multiplication. This function sees if we can
get an exact multiplicative inverse for a divisor and returns it if possible.
This is the hard part of PR9587.
I tested many inputs against llvm-gcc's frotend implementation of this
optimization and didn't find any difference. However, floating point is the
land of weird edge cases, so any review would be appreciated.
llvm-svn: 128545
payloads. APFloat's internal folding routines always make QNaNs now,
instead of sometimes making QNaNs and sometimes SNaNs depending on the
type.
llvm-svn: 97364
smallest-normalized-magnitude values in a given FP semantics.
Provide an APFloat-to-string conversion which I am quite ready to admit could
be much more efficient.
llvm-svn: 92126