This adds assembler / disassembler support for the hexadecimal
floating-point instructions. Since the Linux ABI does not use
any hex float data types, these are not useful for codegen.
llvm-svn: 304202
The maximum alignment for ARM NEON data types should be 64-bits as specified
in ARM procedure call standard document Sec. A.2 Notes.
This patch fixes it from its current larger natural default values, except
for Android (so as not to break existing ABI).
Reviewed by: Stephen Hines, Renato Golin.
Differential Revision: https://reviews.llvm.org/D33205
llvm-svn: 304201
The MC ConstantPool class uses a DenseMap to track generated constants, with
the int64_t value of the constant as the key. This fails when values of
0x7fffffffffffffff or 0x7ffffffffffffffe are inserted into the constant pool, as
these are sentinel values for DenseMap.
The fix is to use std::map instead, which doesn't use sentinel values.
Differential revision: https://reviews.llvm.org/D33667
llvm-svn: 304199
I found that during visual inspection of code while wrote different patch.
Script in testcase probably have nothing common with real life, but
we segfault currently using it.
If output section is known NOBITS, there is no need to create
writers threads for doing nothing or proccess any filler logic that
is useless here. We can just early return, that is what this patch do.
DIfferential revision: https://reviews.llvm.org/D33646
llvm-svn: 304192
Summary:
This is the fix for patch https://reviews.llvm.org/D33353
@uweigand, could you please verify that everything will be good on SystemZ?
I added triple spir-unknown-unknown.
Thank you in advance!
Reviewers: uweigand
Reviewed By: uweigand
Subscribers: yaxunl, cfe-commits, bader, Anastasia, uweigand
Differential Revision: https://reviews.llvm.org/D33648
llvm-svn: 304191
InputSections may contain MergeInputSection members which trigger
a segmentation fault when trying to cast them to InputSection.
Differential Revision: https://reviews.llvm.org/D33628
llvm-svn: 304189
While the following expression is handled fine:
PROVIDE_HIDDEN(newsym = oldsym + address);
The following expression triggers an error because the expression
is evaluated as absolute:
PROVIDE_HIDDEN(newsym = ALIGN(oldsym, CONSTANT(MAXPAGESIZE)) + address);
To avoid this error, we use late evaluation for ALIGN by making the
alignment an attribute of the expression itself.
Differential Revision: https://reviews.llvm.org/D33629
llvm-svn: 304185
and it has an include guard, produce callbacks for a module import, not for a
skipped non-modular header.
Fixes -E output when preprocessing a module to list these cases as a module
import, rather than suppressing the #include and losing the import side effect.
llvm-svn: 304183
Now that we are trying to use the linker script representation as the
canonycal one, there are a few loops looking for just OutputSectionCommands.
Create a vector with just the OutputSectionCommands once that is
stable to simplify the rest of the code.
llvm-svn: 304181
This is super awkward, but GCC doesn't let us have template visible when
an argument is an inline function and -fvisibility-inlines-hidden is
used.
llvm-svn: 304175
from_address requires that the provided pointer refer to the suspended coroutine,
which doesn't have a type, or at least not one knowable by the user. Therefore
every use of `from_address` with a typed pointer is almost certainly a bug.
This behavior is a part of the TS specification, but hopefully it will be
in the future.
llvm-svn: 304172
This should fix the leaks found by asan buildbot in r304162.
Also don't store a reference to the factory with every map value,
which is the only difference between ImmutableMap and ImmutableMapRef.
llvm-svn: 304170
xchg with a mem operand has different locking semantics. If we unfold it
into a xchg r,r we will loose the implicit lock. Likewise we never want
to fold a register xchg into a memory one as it would be a lot slower.
This triggers during LLVM selfhost.
llvm-svn: 304163
The analyzer's taint analysis can now reason about structures or arrays
originating from taint sources in which only certain sections are tainted.
In particular, it also benefits modeling functions like read(), which may
read tainted data into a section of a structure, but RegionStore is incapable of
expressing the fact that the rest of the structure remains intact, even if we
try to model read() directly.
Patch by Vlad Tsyrklevich!
Differential revision: https://reviews.llvm.org/D28445
llvm-svn: 304162
Following the request made in https://reviews.llvm.org/D32871, the
general documentation of the Vectorization Plan is hereby placed
under docs/Proposals.
llvm-svn: 304161
The new checker currently contains the very core infrastructure for tracking
the state of iterator-type objects in the analyzer: relating iterators to
their containers, tracking symbolic begin and end iterator values for
containers, and solving simple equality-type constraints over iterators.
A single specific check over this infrastructure is capable of finding usage of
out-of-range iterators in some simple cases.
Patch by Ádám Balogh!
Differential revision: https://reviews.llvm.org/D32592
llvm-svn: 304160
pthread_mutex_destroy() may fail, returning a non-zero error number, and
keeping the mutex untouched. The mutex can be used on the execution branch
that follows such failure, so the analyzer shouldn't warn on using
a mutex that was previously destroyed, when in fact the destroy call has failed.
Patch by Malhar Thakkar!
Differential revision: https://reviews.llvm.org/D32449
llvm-svn: 304159
error C2971: 'llvm::ManagedStatic': template parameter 'Creator': 'CreateDefaultTimerGroup': a variable with non-static storage duration cannot be used as a non-type argument
llvm-svn: 304157
This used to be just leaked. r295370 made it use magic statics. This adds
a global destructor, which is something we'd like to avoid. It also creates
a weird situation where the mutex used by TimerGroup is re-created during
global shutdown and leaked.
Using a ManagedStatic here is also subtle as it relies on the mutex
inside of ManagedStatic to be recursive. I've added a test for that
in a previous change.
llvm-svn: 304156
The extending load possibility was missed in:
https://reviews.llvm.org/rL304072
We might want to handle this cases as a follow-up, but bailing out for now
to avoid miscompiling.
llvm-svn: 304153
Use VLREP when inserting one or more loads into a vector. This is more
efficient than to first load and then use a VLVGP.
Review: Ulrich Weigand
llvm-svn: 304152