1) Fix a regression in llvmorg-11-init-2485-g0e3a4877840 that would
reject some cases where a class name is shadowed by a typedef-name
causing a destructor declaration to be rejected. Prefer a tag type over
a typedef in destructor name lookup.
2) Convert the "type in destructor declaration is a typedef" error to an
error-by-default ExtWarn to allow codebases to turn it off. GCC and MSVC
do not enforce this rule.
Also add extension warnings for the cases that are disallowed by the
current rules for destructor name lookup, refactor and simplify the
lookup code, and improve the diagnostic quality when lookup fails.
The special case we previously supported for converting
p->N::S<int>::~S() from naming a class template into naming a
specialization thereof is subsumed by a more general rule here (which is
also consistent with Clang's historical behavior and that of other
compilers): if we can't find a suitable S in N, also look in N::S<int>.
The extension warnings are off by default, except for a warning when
lookup for p->N::S::~T() looks for T in scope instead of in N (or N::S).
That seems sufficiently heinous to warn on by default, especially since
we can't support it for a dependent nested-name-specifier.
Summary:
Due to a recent (but retroactive) C++ rule change, only sufficiently
C-compatible classes are permitted to be given a typedef name for
linkage purposes. Add an enabled-by-default warning for these cases, and
rephrase our existing error for the case where we encounter the typedef
name for linkage after we've already computed and used a wrong linkage
in terms of the new rule.
Reviewers: rjmccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74103
Address space conversion changes pointer representation.
This commit disallows such conversions when they are not
legal i.e. for the nested pointers even with compatible
address spaces. Because the address space conversion in
the nested levels can't be generated to modify the pointers
correctly. The behavior implemented is as follows:
- Any implicit conversions of nested pointers with different
address spaces is rejected.
- Any conversion of address spaces in nested pointers in safe
casts (e.g. const_cast or static_cast) is rejected.
- Conversion in low level C-style or reinterpret_cast is accepted
but with a warning (this aligns with OpenCL C behavior).
Fixes PR39674
Differential Revision: https://reviews.llvm.org/D73360
constant initialization.
Removing this zeroing regressed our code generation in a few cases, also
fixed here. We now compute whether a variable has constant destruction
even if it doesn't have a constant initializer, by trying to destroy a
default-initialized value, and skip emitting a trivial default
constructor for a variable even if it has non-trivial (but perhaps
constant) destruction.
We would incorrectly check whether the type-constraint had already been initialized, causing us
to ignore the invented template type constraints entirely.
Also, TemplateParameterList would store incorrect information about invented type parameters
when it observed them before their type-constraint was initialized, so we recreate it after
initializing the function type of an abbreviated template.
Apply the fix of f780e15caf ("[OpenCL] Fix support for
cl_khr_mipmap_image_writes", 2020-01-27) also to the TableGen OpenCL
builtin function definitions.
We did not have a CXXThisScope around constraint checking of functions and
function template specializations, causing a crash when checking a constraint
that had a 'this' (bug 44689).
Recommit after fixing test.
We did not have a CXXThisScope around constraint checking of functions and
function template specializations, causing a crash when checking a constraint
that had a 'this' (bug 44689)
Summary:
Changes:
- Calls to consteval function are now evaluated in constant context but IR is still generated for them.
- Add diagnostic for taking address of a consteval function in non-constexpr context.
- Add diagnostic for address of consteval function accessible at runtime.
- Add tests
Reviewers: rsmith, aaron.ballman
Reviewed By: rsmith
Subscribers: mgrang, riccibruno, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63960
Align `Type` names to their actual OpenCL C type names, such that we
can print OpenCL C types from TableGen. This is particularly helpful
for completeness comparisons with `opencl-c.h`.
Drop the "Name" field from `TypeList`, as it is unused.
Minor formatting changes.
We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
Reland after fixing bug caused by another flow reaching SubstParmVarDecl and instantiating the TypeConstraint
a second time.
We previously instantiated type-constraints of template type parameters along with the type parameter itself,
this caused problems when the type-constraints created by abbreviated templates refreneced other parameters
in the abbreviated templates.
When encountering a template type parameter with a type constraint, if it is implicit, delay instantiation of
the type-constraint until the function parameter which created the invented template type parameter is
instantiated.
Summary: Just like templates, they are excepted from the ODR rule.
Reviewed By: aaron.ballman, rsmith
Differential Revision: https://reviews.llvm.org/D68923
types are needed to compute the return type of a defaulted operator<=>.
This raises the question of what to do if return type deduction fails.
The standard doesn't say, and implementations vary, so for now reject
that case eagerly to keep our options open.
We previously would not correctly for the initial parameter mapping for variadic template parameters in Concepts.
Testing this lead to the discovery that with the normalization process we would need to substitute into already-substituted-into
template arguments, which means we need to add NonTypeTemplateParmExpr support to TemplateInstantiator.
We do that by substituting into the replacement and the type separately, and then re-checking the expression against the NTTP
with the new type, in order to form any new required implicit casts (for cases where the type of the NTTP was dependent).
Add fixits for messaging self in MRR or using super, as the intent is
clear, and it turns out people do that a lot more than expected.
Allow for objc_direct_members on main interfaces, it's extremely useful
for internal only classes, and proves to be quite annoying for adoption.
Add some better warnings around properties direct/non-direct clashes (it
was done for methods but properties were a miss).
Radar-Id: rdar://problem/58355212
Signed-off-by: Pierre Habouzit <phabouzit@apple.com>
A constrained function with an auto return type would have it's definition
instantiated in order to deduce the auto return type before the constraints
are checked.
Move the constraints check after the return type deduction.
when building a defaulted comparison.
As a convenient way of asking whether `x @ y` is valid and building it,
we previouly always performed overload resolution and built an
overloaded expression, which would both end up picking a builtin
operator candidate when given a non-overloadable type. But that's not
quite right, because it can result in our finding a user-declared
operator overload, which we should never do when applying operators
non-overloadable types.
Handle this more correctly: skip overload resolution when building
`x @ y` if the operands are not overloadable. But still perform overload
resolution (considering only builtin candidates) when checking validity,
as we don't have any other good way to ask whether a binary operator
expression would be valid.
In passing, split it up into three values (no explicit functions /
explicit conversion functions only / any explicit functions) in
preparation for using that in a future change.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This change added two new attributes, rounding mode and exception
behavior to the structure FPOptions. These attributes allow more
flexible treatment of specific floating point environment than it is
provided by #pragma STDC FENV_ACCESS.
Differential Revision: https://reviews.llvm.org/D65994
We would previously try to evaluate atomic constraints of non-template functions as-is,
and since they are now unevaluated at first, this would cause incorrect evaluation (bugs #44657, #44656).
Substitute into atomic constraints of non-template functions as we would atomic constraints
of template functions, in order to rebuild the expressions in a constant-evaluated context.
Implement a pessimistic evaluator of the minimal required size for a buffer
based on the format string, and couple that with the fortified version to emit a
warning when the buffer size is lower than the lower bound computed from the
format string.
Differential Revision: https://reviews.llvm.org/D71566
Reduces compile time of SemaDeclAttr.cpp down to 28s from 50s. The new
TU does a few RecursiveASTVisitor instantiations, so it takes 30s.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D73385
clang-armv7-linux-build-cache bot is complaining about undefined
references to these variables during linking, so by explicitly
placing them in some TU we should be able to fix that.
There is llvm::Value::MaximumAlignment, which is numerically
equivalent to these constants, but we can't use it directly
because we can't include llvm IR headers in clang Sema.
So instead, copy-paste the constant, and fixup the places to use it.
This was initially reviewed in https://reviews.llvm.org/D72998
Summary:
For `__builtin_assume_aligned()`, we do validate that the alignment
is not greater than `536870912` (D68824), but we don't do that for
`__attribute__((assume_aligned(N)))` attribute.
I suspect we should.
This was initially committed in a4cfb15d15
but reverted in 210f0882c9 due to
suspicious bot failures.
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D72994
Summary:
`alloc_align` attribute takes parameter number, not the alignment itself,
so given **just** the attribute/function declaration we can't do any
sanity checking for said alignment.
However, at call site, given the actual `Expr` that is passed
into that parameter, we //might// be able to evaluate said `Expr`
as Integer Constant Expression, and perform the sanity checks.
But since there is no requirement for that argument to be an immediate,
we may fail, and that's okay.
However if we did evaluate, we should enforce the same constraints
as with `__builtin_assume_aligned()`/`__attribute__((assume_aligned(imm)))`:
said alignment is a power of two, and is not greater than our magic threshold
This was initially committed in c2a9061ac5
but reverted in 00756b1823 because of
suspicious bot failures.
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72996
Sending a message to `self` when it is const and within a class method
is safe because we know that `self` is the Class itself.
We can only relax this warning in ARC.
Signed-off-by: Pierre Habouzit <phabouzit@apple.com>
Radar-Id: rdar://problem/58581965
Differential Revision: https://reviews.llvm.org/D72747
As per P1980R0, constraint expressions are unevaluated operands, and their constituent atomic
constraints only become constant evaluated during satisfaction checking.
Change the evaluation context during parsing and instantiation of constraints to unevaluated.
Now with concepts support merged and mostly complete, we do not need -fconcepts-ts
(which was also misleading as we were not implementing the TS) and can enable
concepts features under C++2a. A warning will be generated if users still attempt
to use -fconcepts-ts.