Currently the VSX support enables use of lxvd2x and stxvd2x for 2x64
types, but does not yet use lxvw4x and stxvw4x for 4x32 types. This
patch adds that support.
As with lxvd2x/stxvd2x, this involves straightforward overriding of
the patterns normally recognized for lvx/stvx, with preference given
to the VSX patterns when VSX is enabled.
In addition, the logic for permitting misaligned memory accesses is
modified so that v4r32 and v4i32 are treated the same as v2f64 and
v2i64 when VSX is enabled. Finally, the DAG generation for unaligned
loads is changed to just use a normal LOAD (which will become lxvw4x)
on P8 and later hardware, where unaligned loads are preferred over
lvsl/lvx/lvx/vperm.
A number of tests now generate the VSX loads/stores instead of
lvx/stvx, so this patch adds VSX variants to those tests. I've also
added <4 x float> tests to the vsx.ll test case, and created a
vsx-p8.ll test case to be used for testing code generation for the
P8Vector feature. For now, that simply tests the unaligned load/store
behavior.
This has been tested along with a temporary patch to enable the VSX
and P8Vector features, with no new regressions encountered with or
without the temporary patch applied.
llvm-svn: 220047
Remove an accidentally-added instruction definition and add a comment in the
test case. This is in response to a post-commit review by Bill Schmidt.
No functionality change intended.
llvm-svn: 177404
PPC64 supports unaligned loads and stores of 64-bit values, but
in order to use the r+i forms, the offset must be a multiple of 4.
Unfortunately, this cannot always be determined by examining the
immediate itself because it might be available only via a TOC entry.
In order to get around this issue, we additionally predicate the
selection of the r+i form on the alignment of the load or store
(forcing it to be at least 4 in order to select the r+i form).
llvm-svn: 177338