RTDyldMemoryManager::getSymbolAddressInProcess()
This should allow JIT'd code for win32 to find in-process symbols. See
http://llvm.org/PR28699 .
Patch by James Holderness. Thanks James!
llvm-svn: 279016
This patch replaces RuntimeDyld::SymbolInfo with JITSymbol: A symbol class
that is capable of lazy materialization (i.e. the symbol definition needn't be
emitted until the address is requested). This can be used to support common
and weak symbols in the JIT (though this is not implemented in this patch).
For consistency, RuntimeDyld::SymbolResolver is renamed to JITSymbolResolver.
For space efficiency a new class, JITEvaluatedSymbol, is introduced that
behaves like the old RuntimeDyld::SymbolInfo - i.e. it is just a pair of an
address and symbol flags. Instances of JITEvaluatedSymbol can be used in
symbol-tables to avoid paying the space cost of the materializer.
llvm-svn: 277386
Doing "I++" inside of an EXPECT_* triggers
warning: expression with side effects has no effect in an unevaluated context
because EXPECT_* partially expands to
EqHelper<(sizeof(::testing::internal::IsNullLiteralHelper(MockObjects[I++] + 1)) == 1)>
which is an unevaluated context.
llvm-svn: 275293
This tidies up some code that was manually constructing RuntimeDyld::SymbolInfo
instances from JITSymbols. It will save more mess in the future when
JITSymbol::getAddress is extended to return an Expected<TargetAddress> rather
than just a TargetAddress, since we'll be able to embed the error checking in
the conversion.
llvm-svn: 271350
This replaces use of std::error_code and ErrorOr in the ORC RPC support library
with Error and Expected. This required updating the OrcRemoteTarget API, Client,
and server code, as well as updating the Orc C API.
This patch also fixes several instances where Errors were dropped.
llvm-svn: 267457
Three problems:
1. <future> can't be easily used. If you must use it, see
include/Support/ThreadPool.h for how.
2. constexpr problems, even after 266588.
3. Move assignment operators can't be defaulted in MSVC2013.
llvm-svn: 266615
asynchronous call/handle. Also updates the ORC remote JIT API to use the new
scheme.
The previous version of the RPC tools only supported void functions, and
required the user to manually call a paired function to return results. This
patch replaces the Procedure typedef (which only supported void functions) with
the Function typedef which supports return values, e.g.:
Function<FooId, int32_t(std::string)> Foo;
The RPC primitives and channel operations are also expanded. RPC channels must
support four new operations: startSendMessage, endSendMessage,
startRecieveMessage and endRecieveMessage, to handle channel locking. In
addition, serialization support for tuples to RPCChannels is added to enable
multiple return values.
The RPC primitives are expanded from callAppend, call, expect and handle, to:
appendCallAsync - Make an asynchronous call to the given function.
callAsync - The same as appendCallAsync, but calls send on the channel when
done.
callSTHandling - Blocking call for single-threaded code. Wraps a call to
callAsync then waits on the result, using a user-supplied
handler to handle any callbacks from the remote.
callST - The same as callSTHandling, except that it doesn't handle
callbacks - it expects the result to be the first return.
expect and handle - as before.
handleResponse - Handle a response from the remote.
waitForResult - Wait for the response with the given sequence number to arrive.
llvm-svn: 266581
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Some Include What You Use suggestions were used too.
Use anonymous namespaces in source files.
Differential revision: http://reviews.llvm.org/D18778
llvm-svn: 265454
The RTDyldMemoryManager::getSymbolAddressInProcess method accepts a
linker-mangled symbol name, but it calls through to dlsym to do the lookup (via
DynamicLibrary::SearchForAddressOfSymbol), and dlsym expects an unmangled
symbol name.
Historically we've attempted to "demangle" by removing leading '_'s on all
platforms, and fallen back to an extra search if that failed. That's broken, as
it can cause symbols to resolve incorrectly on platforms that don't do mangling
if you query '_foo' and the process also happens to contain a 'foo'.
Fix this by demangling conditionally based on the host platform. That's safe
here because this function is specifically for symbols in the host process, so
the usual cross-process JIT looking concerns don't apply.
M unittests/ExecutionEngine/ExecutionEngineTest.cpp
M lib/ExecutionEngine/RuntimeDyld/RTDyldMemoryManager.cpp
llvm-svn: 262657
This patch adds a new class, OrcI386, which contains the hooks needed to
support lazy-JITing on i386 (currently only for Pentium 2 or above, as the JIT
re-entry code uses the FXSAVE/FXRSTOR instructions).
Support for i386 is enabled in the LLI lazy JIT and the Orc C API, and
regression and unit tests are enabled for this architecture.
llvm-svn: 260338
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Summary:
Update ObjectTransformLayer::addObjectSet to take the object set by
value rather than reference and pass it to the base layer with move
semantics rather than copy, to match r258185's changes to
ObjectLinkingLayer.
Update the unit test to verify that ObjectTransformLayer's signature stays
in sync with ObjectLinkingLayer's.
Reviewers: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16414
llvm-svn: 258630
they're needed.
Prior to this patch objects were loaded (via RuntimeDyld::loadObject) when they
were added to the ObjectLinkingLayer, but were not relocated and finalized until
a symbol address was requested. In the interim, another object could be loaded
and finalized with the same memory manager, causing relocation/finalization of
the first object to fail (as the first finalization call may have marked the
allocated memory for the first object read-only).
By deferring the loadObject call (and subsequent memory allocations) until an
object file is needed we can avoid prematurely finalizing memory.
llvm-svn: 258185
Previously these were Darwin-only. Since the switch to direct binary emission
of stubs, trampolines and resolver blocks, these should work on other *nix
platforms too.
These tests can be enabled on Windows once known issues with ORC's handling of
Windows symbol mangling (see e.g. https://llvm.org/PR25940) have been fixed.
llvm-svn: 258031
This patch adds utilities to ORC for managing a remote JIT target. It consists
of:
1. A very primitive RPC system for making calls over a byte-stream. See
RPCChannel.h, RPCUtils.h.
2. An RPC API defined in the above system for managing memory, looking up
symbols, creating stubs, etc. on a remote target. See OrcRemoteTargetRPCAPI.h.
3. An interface for creating high-level JIT components (memory managers,
callback managers, stub managers, etc.) that operate over the RPC API. See
OrcRemoteTargetClient.h.
4. A helper class for building servers that can handle the RPC calls. See
OrcRemoteTargetServer.h.
The system is designed to work neatly with the existing ORC components and
functionality. In particular, the ORC callback API (and consequently the
CompileOnDemandLayer) is supported, enabling lazy compilation of remote code.
Assuming this doesn't trigger any builder failures, a follow-up patch will be
committed which tests these utilities by using them to replace LLI's existing
remote-JITing demo code.
llvm-svn: 257305
RuntimeDyld::MemoryManager.
The RuntimeDyld::MemoryManager::reserveAllocationSpace method is called when
object files are loaded, and gives clients a chance to pre-allocate memory for
all segments. Previously only the size of each segment (code, ro-data, rw-data)
was supplied but not the alignment. This hasn't caused any problems so far, as
most clients allocate via the MemoryBlock interface which returns page-aligned
blocks. Adding alignment arguments enables finer grained allocation while still
satisfying alignment restrictions.
llvm-svn: 257294
llvm\unittests\ExecutionEngine\Orc\ObjectLinkingLayerTest.cpp(115) : error C2327: 'llvm::OrcExecutionTest::TM' : is not a type name, static, or enumerator
llvm\unittests\ExecutionEngine\Orc\ObjectLinkingLayerTest.cpp(115) : error C2065: 'TM' : undeclared identifier
FYI, "this->TM" was valid even before moving class SectionMemoryManagerWrapper.
llvm-svn: 257290
managers.
Prior to this patch, recursive finalization (where finalization of one
RuntimeDyld instance triggers finalization of another instance on which the
first depends) could trigger memory access failures: When the inner (dependent)
RuntimeDyld instance and its memory manager are finalized, memory allocated
(but not yet relocated) by the outer instance is locked, and relocation in the
outer instance fails with a memory access error.
This patch adds a latch to the RuntimeDyld::MemoryManager base class that is
checked by a new method: RuntimeDyld::finalizeWithMemoryManagerLocking, ensuring
that shared memory managers are only finalized by the outermost RuntimeDyld
instance.
This allows ORC clients to supply the same memory manager to multiple calls to
addModuleSet. In particular it enables the use of user-supplied memory managers
with the CompileOnDemandLayer which must reuse the supplied memory manager for
each function that is lazily compiled.
llvm-svn: 257263
Type specific declarations have been moved to Type.h and error handling
routines have been moved to ErrorHandling.h. Both are included in Core.h
so nothing should change for projects directly including the headers,
but transitive dependencies may be affected.
llvm-svn: 255965
This class is turning into a useful interface, rather than an implementation
detail, so I'm dropping the 'Base' suffix.
No functional change.
llvm-svn: 254693
Bypassing LLVM for this has a number of benefits:
1) Laziness support becomes asm-syntax agnostic (previously lazy jitting didn't
work on Windows as the resolver block was in Darwin asm).
2) For cross-process JITs, it allows resolver blocks and trampolines to be
emitted directly in the target process, reducing cross process traffic.
3) It should be marginally faster.
llvm-svn: 251933
with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
This reverts commit r241962, as it was breaking all ARM buildbots.
It also reverts the two subsequent related commits:
r241974: "[ExecutionEngine] Add a static cast to the unittest for r241962 to suppress a warning."
r241973: "[ExecutionEngine] Remove cruft and fix a couple of warnings in the test case for r241962."
llvm-svn: 241983
Summary:
This is a utility for clients that want to insert a layer that modifies
each ObjectFile and then passes it along to the next layer.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10456
llvm-svn: 240640
Summary: This adds FindGlobalVariableNamed to ExecutionEngine
(plus implementation in MCJIT), which is an analog of
FindFunctionNamed for GlobalVariables.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10421
llvm-svn: 240202
Add support for resolving MIPS64r2 and MIPS64r6 relocations in MCJIT.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D9667
llvm-svn: 238424
the function body.
This is necessary for correctness when lazily compiling.
Also, flesh out the Orc unit test infrastructure slightly, and add a unit test
for this.
llvm-svn: 235347
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
This patch fixes MCJIT::addGlobalMapping by changing the implementation of the
ExecutionEngineState class. The new implementation maintains a bidirectional
mapping between symbol names (std::strings) and addresses (uint64_ts), rather
than a mapping between Value*s and void*s.
This has fix has been made for backwards compatibility, however the strongly
preferred way to resolve unknown symbols is by writing a custom
RuntimeDyld::SymbolResolver (formerly RTDyldMemoryManager) and overriding the
findSymbol method. The addGlobalMapping method is a hangover from the legacy JIT
(which has was removed in 3.6), and may be deprecated in a future release as
part of a clean-up of the ExecutionEngine interface.
Patch by Murat Bolat. Thanks Murat!
llvm-svn: 233747
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509
I made my best guess at the Makefile, since I don't have a make build.
I'm not sure if it should be valid to add an empty list of things, but
it seemed the sort of degenerate case.
llvm-svn: 230196
This has wider implications than I expected when I reviewed the patch: It can
cause JIT crashes where clients have used the default value for AbortOnFailure
during symbol lookup. I'm currently investigating alternative approaches and I
hope to have this back in tree soon.
llvm-svn: 227287
Support weak symbols by first looking up if there is an externally visible symbol we can find,
and only if that fails using the one in the object file we're loading.
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6950
llvm-svn: 227228
Summary:
Basically all other methods that look up functions by name skip them if they are mere declarations.
Do the same in FindFunctionNamed.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7068
llvm-svn: 227227
Avoid using unions for storing the return value from
LLVMGetGlobalValueAddress() and LLVMGetFunctionAddress() and accessing it as
a pointer through another pointer member. This causes problems on 32-bit big
endian machines since the pointer gets the higher part of the return value of
the aforementioned functions.
llvm-svn: 226170