template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
caused an assertion when dealing with non-type template parameter
packs. Add some tests for deduction and instantiation of non-type
template parameter packs.
llvm-svn: 122534
extract the appropriate argument from the argument pack (based on the
current substitution index, of course). Simple instantiation of pack
expansions involving non-type template parameter packs now works.
llvm-svn: 122532
packs, e.g.,
template<typename T, unsigned ...Dims> struct multi_array;
along with semantic analysis support for finding unexpanded non-type
template parameter packs in types, expressions, and so on.
Template instantiation involving non-type template parameter packs
probably doesn't work yet. That'll come soon.
llvm-svn: 122527
specialization's template arguments against the primary template's
template arguments using the obvious, correct method of checking the
injected-class-name type (C++ [temp.class.spec]p9b3). The previous
incarnation of this comparison attempted to use its own formulation of
the injected-class-name, which is redudant and, with the introduction
of variadic templates, became wrong (again).
llvm-svn: 122508
template argument corresponding to a template parameter pack is an
argument pack of a pack expansion of that template parameter
pack. Implements C++0x [temp.dep.type]p2 (at least, as much of it as
we can).
llvm-svn: 122498
parameter packs. In particular, a parameter pack not otherwise deduced
is deduced to an empty parameter pack.
The C++0x wording here is a bit unfortunate; this should really only
apply to function templates, and it mentions "trailing" parameter
packs, which doesn't really make sense in the context of function
templates. Will file a core issue separately.
llvm-svn: 122463
the presence of a pack expansion anywhere except at the end of a
template-argument-list causes the entire template-argument-list to be
a non-deduced context.
llvm-svn: 122461
single routine. Extend that routine to handle consistency
checking for template argument packs, so that we can compare the
deduced packs for template parameter packs across different pack
expansions.
llvm-svn: 122452
pattern is a template argument, which involves repeatedly deducing
template arguments using the pattern of the pack expansion, then
bundling the resulting deductions into an argument pack.
We can now handle a variety of simple list-handling metaprograms using
variadic templates. See, e.g., the new "count" metaprogram.
llvm-svn: 122439
dependent template specialization type, the number of template
arguments need not match precisely. Rather than checking the number of
arguments eagerly (which does not consider argument packs), let the
deduction routine for template argument lists cope with too many/too
few arguments.
llvm-svn: 122425
deduction. Unify all of the looping over template arguments for
deduction purposes into a single place, where argument pack expansion
occurs; this is also the hook for deducing from pack expansions, which
itself is not yet implemented.
For now, at least we can handle a basic "count" metafunction written
with variadics. See the new test for the formulation that works.
llvm-svn: 122418
whose patterns are template arguments. We can now instantiate, e.g.,
typedef tuple<pair<OuterTypes, InnerTypes>...> type;
where OuterTypes and InnerTypes are template type parameter packs.
There is a horrible inefficiency in
TemplateArgumentLoc::getPackExpansionPattern(), where we need to
create copies of TypeLoc data because our interfaces traffic in
TypeSourceInfo pointers where they should traffic in TypeLocs
instead. I've isolated in efficiency in this one routine; once we
refactor our interfaces to traffic in TypeLocs, we can eliminate it.
llvm-svn: 122278
a parameter pack, check the parameter pack against each of the
template arguments it corresponds to, then pack the converted
arguments into a template argument pack. Allows us to use variadic
class templates so long as instantiation isn't required, e.g.,
template<typename... Types> struct Tuple;
Tuple<int, float> *t2;
llvm-svn: 122251
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
declarations. This is a work in progress, as I go through the C++
declaration grammar to identify where unexpanded parameter packs can
occur.
llvm-svn: 121912
parameter packs within a statement, type, etc. Use this visitor to
provide improved diagnostics for the presence of unexpanded parameter
packs in a full expression, base type, declaration type, etc., by
highlighting the unexpanded parameter packs and providing their names,
e.g.,
test/CXX/temp/temp.decls/temp.variadic/p5.cpp:28:85: error: declaration type
contains unexpanded parameter packs 'VeryInnerTypes',
'OuterTypes', ...
...VeryInnerTypes, OuterTypes>, pair<InnerTypes, OuterTypes> > types;
~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ^
llvm-svn: 121883
whether the expression contains an unexpanded parameter pack, in the
same vein as the changes to the Type hierarchy. Compute this bit
within all of the Expr subclasses.
This change required a bunch of reshuffling of dependency
calculations, mainly to consolidate them inside the constructors and
to fuse multiple loops that iterate over arguments to determine type
dependence, value dependence, and (now) containment of unexpanded
parameter packs.
Again, testing is painfully sparse, because all of the diagnostics
will change and it is more important to test the to-be-written visitor
that collects unexpanded parameter packs.
llvm-svn: 121831
and TemplateArgument with an operation that determines whether there
are any unexpanded parameter packs within that construct. Use this
information to diagnose the appearance of the names of parameter packs
that have not been expanded (C++ [temp.variadic]p5). Since this
property is checked often (every declaration, ever expression
statement, etc.), we extend Type and Expr with a bit storing the
result of this computation, rather than walking the AST each time to
determine whether any unexpanded parameter packs occur.
This commit is deficient in several ways, which will be remedied with
future commits:
- Expr has a bit to store the presence of an unexpanded parameter
pack, but it is never set.
- The error messages don't point out where the unexpanded parameter
packs were named in the type/expression, but they should.
- We don't check for unexpanded parameter packs in all of the places
where we should.
- Testing is sparse, pending the resolution of the above three
issues.
llvm-svn: 121724
particular, we only add the implement object parameter type if only
one of the function templates is a non-static member function
template.
Moreover, since this DR differs from existing practice in C++98/03,
this commit implements the existing practice (which ignores the
first parameter of the function template that is not the non-static
member function template) in C++98/03 mode.
llvm-svn: 119145
in the order they occur within the class template, delaying
out-of-line member template partial specializations until after the
class has been fully instantiated. This fixes a regression introduced
by r118454 (itself a fix for PR8001).
llvm-svn: 118704
only keep deduction results for successful deductions, so that they
can be compared against each other. Fixes PR8462, from Richard Smith!
llvm-svn: 117983
themselves have no template parameters. This is actually a restriction
due to the grammar of template template parameters, but we choose to
diagnose it in Sema to provide better recovery.
llvm-svn: 117032
construct an unsupported friend when there's a friend with a templated
scope specifier. Fixes a consistency crash, rdar://problem/8540527
llvm-svn: 116786
that are suppressed during template argument deduction. This change
queues diagnostics computed during template argument deduction. Then,
if the resulting function template specialization or partial
specialization is chosen by overload resolution or partial ordering
(respectively), we will emit the queued diagnostics at that point.
This addresses most of PR6784. However, the check for unnamed/local
template arguments (which existed before this change) is still only
skin-deep, and needs to be extended to look deeper into types. It must
be improved to finish PR6784.
llvm-svn: 116373
of templated-scope friends by marking them invalid and white-listing all
accesses until such time as we implement them. Fixes a crash, this time
without a broken test case.
llvm-svn: 116364
argument deduction, make sure to check the correctness of deduced template
type arguments (which we had previously skipped) along with other
kinds of template arguments. This fixes part of PR6784, but we're
still swallowing the extension warning about unnamed/local template
arguments.
llvm-svn: 116327
error to a warning if we're in a case that would be allowed in
C++0x. This "fixes" PR8084 by making Clang accept more code than GCC
and (non-strict) EDG do.
Also, add the missing test case for the C++0x semantics, which should
have been in r113717.
llvm-svn: 113718
instantiating the parameters. In a perfect world, this wouldn't
matter, and compilers are free to instantiate in any order they
want. However, every other compiler seems to instantiate the return
type first, and some code (in this case, Boost.Polygon) depends on
this and SFINAE to avoid instantiating something that shouldn't be
instantiated.
We could fight this battle, and insist that Clang is allowed to do
what it does, but it's not beneficial: it's more predictable to
instantiate this way, in source order. When we implement
late-specified return types, we'll need to instantiate the return type
last when it was late-specified, hence the FIXME.
We now compile Boost.Polygon properly.
llvm-svn: 112561
deduction where the parameter is a function reference, function
pointer, or member function pointer and the argument is an overloaded
function. Fixes <rdar://problem/8360106>, a template argument
deduction issue found by Boost.Filesystem.
llvm-svn: 112523
templates when only the declaration is in scope. This requires deferring the
instantiation to be lazy, and ensuring the definition is required for that
translation unit. We re-use the existing pending instantiation queue,
previously only used to track implicit instantiations which were required to be
lazy. Fixes PR7979.
A subsequent change will rename *PendingImplicitInstantiations to
*PendingInstatiations for clarity given its broader role.
llvm-svn: 112037
just means "not a function type", not "not a function type or void". This
changes behavior slightly, but generally in a way which accepts more code.
llvm-svn: 110303
at -O0. The only change from the previous patch is that we don't try
to generate virtual method thunks for an available_externally
function.
llvm-svn: 108230
-O0, since we won't be using the definitions for anything anyway. For
lib/System/Path.o when built in Debug+Asserts mode, this leads to a 4%
improvement in compile time (and suppresses 440 function bodies).
<rdar://problem/7987644>
llvm-svn: 108156
This is more targeted, as it simply provides toggle actions for the parser to
turn access checking on and off. We then use these to suppress access checking
only while we parse the template-id (included scope specifier) of an explicit
instantiation and explicit specialization of a class template. The
specialization behavior is an extension, as it seems likely a defect that the
standard did not exempt them as it does explicit instantiations.
This allows the very common practice of specializing trait classes to work for
private, internal types. This doesn't address instantiating or specializing
function templates, although those apparently already partially work.
The naming and style for the Action layer isn't my favorite, comments and
suggestions would be appreciated there.
llvm-svn: 106993
template names. We were completely missing naming classes for many unqualified
lookups, but this didn't trigger code paths that need it. This removes part of
an optimization that re-uses the template name lookup done by the parser to
determine if explicit template arguments actually form a template-id.
Unfortunately the technique for avoiding the duplicate lookup lost needed data
such as the class context in which the lookup succeeded.
llvm-svn: 104117
Revert much of the implementation of C++98/03 [temp.friend]p5 in
r103943 and its follow-ons r103948 and r103952. While our
implementation was technically correct, other compilers don't seem to
implement this paragraph (which forces the instantiation of friend
functions defined in a class template when a class template
specialization is instantiated), and doing so broke a bunch of Boost
libraries.
Since this behavior has changed in C++0x (which instantiates the
friend function definitions when they are used), we're going to skip
the nowhere-implemented C++98/03 semantics and go straight to the
C++0x semantics.
This commit is a band-aid to get Boost up and running again. It
doesn't really fix PR6952 (which this commit un-fixes), but it does
deal with the way Boost.Units abuses this particular paragraph.
llvm-svn: 104014
within class templates be instantiated along with each class template
specialization, even if the functions are not used. Do so, as a baby
step toward PR6952.
llvm-svn: 103943
explicit instantiations of template. C++0x clarifies the intent
(they're ill-formed in some cases; see [temp.explicit] for
details). However, one could squint at the C++98/03 standard and
conclude they are permitted, so reduce the error to a warning
(controlled by -Wc++0x-compat) in C++98/03 mode.
llvm-svn: 103482
specific message that includes the template arguments, e.g.,
test/SemaTemplate/overload-candidates.cpp:27:20: note: candidate template
ignored: substitution failure [with T = int *]
typename T::type get_type(const T&); // expected-note{{candidate ...
^
llvm-svn: 103348
many/too few arguments, use the same diagnostic we use for arity
mismatches in non-templates (but note that it's a function template).
llvm-svn: 103341
conflicting deduced template argument values, give a more specific
reason along with those values, e.g.,
test/SemaTemplate/overload-candidates.cpp:4:10: note: candidate template
ignored: deduced conflicting types for parameter 'T' ('int' vs. 'long')
const T& min(const T&, const T&);
^
llvm-svn: 103339
specializations, substitute the deduced template arguments and check
the resulting substitution before concluding that template argument
deduction succeeds. This marvelous little fix makes a bunch of
Boost.Spirit tests start working.
llvm-svn: 102601
way that C does. Among other differences, elaborated type specifiers
are defined to skip "non-types", which, as you might imagine, does not
include typedefs. Rework our use of IDNS masks to capture the semantics
of different kinds of declarations better, and remove most current lookup
filters. Removing the last remaining filter is more complicated and will
happen in a separate patch.
Fixes PR 6885 as well some spectrum of unfiled bugs.
llvm-svn: 102164
intended for redeclarations, fixing those that need it. Fixes PR6831.
This uncovered an issue where the C++ type-specifier-seq parsing logic
would try to perform name lookup on an identifier after it already had
a type-specifier, which could also lead to spurious ambiguity errors
(as in PR6831, but with a different test case).
llvm-svn: 101419
name-lookup ambiguities when there are multiple base classes that are
all specializations of the same class template. This is part of a
general cleanup for ambiguities in template-name lookup. Fixes
PR6717.
llvm-svn: 101065
specializations when the explicit instantiation was... explicitly
written, i.e., not the product of an explicit instantiation of an
enclosing class. Fixes this spurious warning when Clang builds LLVM:
/Volumes/Data/dgregor/Projects/llvm/lib/CodeGen/MachineDominators.cpp:22:1:
warning: explicit instantiation of 'addRoot' that occurs after an
explicit specialization will be ignored (C++0x extension) [-pedantic]
llvm-svn: 100900
Remove -faccess-control from -cc1; add -fno-access-control.
Make the driver pass -fno-access-control by default.
Update a bunch of tests to be correct under access control.
llvm-svn: 100880
- When instantiating a friend type template, perform semantic
analysis on the resulting type.
- Downgrade the errors concerning friend type declarations that do
not refer to classes to ExtWarns in C++98/03. C++0x allows
practically any type to be befriended, and ignores the friend
declaration if the type is not a class.
llvm-svn: 100635
an object or function. Our previous checking was too lax, and ended up
allowing missing or extraneous address-of operators, among other
evils. The new checking provides better diagnostics and adheres more
closely to the standard.
Fixes PR6563 and PR6749.
llvm-svn: 100125
check deduced non-type template arguments and template template
arguments against the template parameters for which they were deduced,
performing conversions as appropriate so that deduced template
arguments get the same treatment as explicitly-specified template
arguments. This is the bulk of PR6723.
Also keep track of whether deduction of a non-type template argument
came from an array bound (vs. anywhere else). With this information,
we enforce C++ [temp.deduct.type]p17, which requires exact type
matches when deduction deduces a non-type template argument from
something that is not an array bound.
Finally, when in a SFINAE context, translate the "zero sized
arrays are an extension" extension diagnostic into a hard error (for
better standard conformance), which was a minor part of PR6723.
llvm-svn: 99734
that we extend/truncate then correct the sign to convert the non-type
template argument to the template parameter's type. Previously, we
reported an error when the non-type template argument was out of
range; now we just warn.
llvm-svn: 99600
the type of its corresponding non-type template parameter changes the
value. Previously, we were diagnosing this as an error, which was
wrong. We give reasonably nice warnings like:
test/SemaTemplate/temp_arg_nontype.cpp💯10: warning: non-type template
argument value '256' truncated to '0' for template parameter of type
'unsigned char'
Overflow<256> *overflow3; // expected-warning{{non-type template ...
^~~
test/SemaTemplate/temp_arg_nontype.cpp:96:24: note: template parameter is
declared here
template<unsigned char C> struct Overflow;
^
llvm-svn: 99561
the redeclaration chain. Recommitted from r99477 with a fix: we need to
merge in default template arguments from previous declarations.
llvm-svn: 99496
buildbot. The tramp3d test fails.
--- Reverse-merging r99477 into '.':
U test/SemaTemplate/friend-template.cpp
U test/CXX/temp/temp.decls/temp.friend/p1.cpp
U lib/Sema/SemaTemplateInstantiateDecl.cpp
U lib/Sema/SemaAccess.cpp
llvm-svn: 99481
since we have absolutely no way to match them when they are declared
nor do we have a way to represent these parsed-but-not-checked friend
declarations.
llvm-svn: 99407
templates. So delay access-control diagnostics when (for example) the target
of a friend declaration is a specific specialization of a template.
I was surprised to find that this was required for an access-controlled selfhost.
llvm-svn: 99383
parameter hides a namespace-scope declararion with the same name in an
out-of-line definition of a template. The lookup requires a strange
interleaving of lexical and semantic scopes (go C++), which I have not
yet handled in the typo correction/code completion path.
Fixes PR6594.
llvm-svn: 98544
iterations of this patch gave explicit template instantiation
link-once ODR linkage, which permitted the back end to eliminate
unused symbols. Weak ODR linkage still requires the symbols to be
generated.
llvm-svn: 98441
declarations after the member has been explicitly specialized. We already
did this after explicit instantiation definitions; not doing it for
declarations meant that subsequent definitions would see a previous
member declaration with specialization kind "explicit instantiation decl",
which would then happily get overridden.
Fixes PR 6458.
llvm-svn: 97605
*not* entering the context of the nested-name-specifier. This was
causing us to look into an uninstantiated template that we shouldn't
look into. Fixes PR6376.
llvm-svn: 97524
propagating error conditions out of the various annotate-me-a-snowflake
routines. Generally (but not universally) removes redundant diagnostics
as well as, you know, not crashing on bad code. On the other hand,
I have just signed myself up to fix fiddly parser errors for the next
week. Again.
llvm-svn: 97221
Sema::ActOnUninitializedDecl over to InitializationSequence (with
default initialization), eliminating redundancy. More importantly, we
now check that a const definition in C++ has an initilizer, which was
an #if 0'd code for many, many months. A few other tweaks were needed
to get everything working again:
- Fix all of the places in the testsuite where we defined const
objects without initializers (now that we diagnose this issue)
- Teach instantiation of static data members to find the previous
declaration, so that we build proper redeclaration
chains. Previously, we had the redeclaration chain but built it
too late to be useful, because...
- Teach instantiation of static data member definitions not to try
to check an initializer if a previous declaration already had an
initializer. This makes sure that we don't complain about static
const data members with in-class initializers and out-of-line
definitions.
- Move all of the incomplete-type checking logic out of
Sema::FinalizeDeclaratorGroup; it makes more sense in
ActOnUnitializedDecl.
There may still be a few places where we can improve these
diagnostics. I'll address that as a separate commit.
llvm-svn: 95657
non-type template parameter that has reference type, augment the
qualifiers of the non-type template argument with those of the
referenced type. Fixes PR6250.
llvm-svn: 95607
template parameter, perform array/function decay (if needed), take the
address of the argument (if needed), perform qualification conversions
(if needed), and remove any top-level cv-qualifiers from the resulting
expression. Fixes PR6226.
llvm-svn: 95309
arguments. Fix a bug where incomplete explicit specializations were being
passed through as legitimate. Fix a bug where the absence of an explicit
specialization in an overload set was causing overall deduction to fail.
Fixes PR6191.
llvm-svn: 95052
arguments. This both prevents meaningless checks on these arguments and ensures
that they are represented as an expression by the instantiation.
Cleaned up and added standard text to the relevant test case. Also started
adding tests for *rejected* cases. At least one FIXME here where (I think) we
allow something we shouldn't. More to come in the area of rejecting crazy
arguments with decent diagnostics. Suggestions welcome for still better
diagnostics on these errors!
llvm-svn: 94953
why the candidate is non-viable. There's a lot we can do to improve this, but
it's a good start. Further improvements should probably be integrated with the
bad-initialization reporting routines.
llvm-svn: 93277