"The CWriter::GetValueName() method does not check if a value as an alias
and emits the alias name which will never be defined in the output .c
file (so the output file fails to compile). This can happen if you have
multiple inheritance with several destructors defined by clang (...D0Ev,
...D1Ev, ...D2Ev)."
-- applied with minor tweaks. Thanks!
llvm-svn: 110194
Add support for using the FPSCR in conjunction with the vcvtr instruction, for controlling fp to int rounding.
Add support for the FLT_ROUNDS_ node now that the FPSCR is exposed.
llvm-svn: 110152
XCore->XCoreGen
PIC16->PIC16CodeGen
After updating your working copy, the first build will fail because it
is using the old library dependencies. Start the build again and it
will work fine.
llvm-svn: 110127
such registers in SPU, this support boils down to "emulating"
them by duplicating instructions on the general purpose registers.
This adds the most basic operations on v2i32: passing parameters,
addition, subtraction, multiplication and a few others.
llvm-svn: 110035
reference registers past the end of the NEON register file, and report them
as invalid instead of asserting when trying to print them. PR7746.
llvm-svn: 109933
formerly rejected by the FE, so asserted in the BE; now the FE only
warns, so we treat it as a legitimate fatal error in PPC BE.
This means the test for the feature won't pass, so it's xfail'd.
llvm-svn: 109892
declared during the addition of the assembler support, the additional
changes are:
- Add missing intrinsics
- Move all SSE conversion instructions in X86InstInfo64.td to the SSE.td file.
- Duplicate some patterns to AVX mode.
- Step into PCMPEST/PCMPIST custom inserter and add AVX versions.
llvm-svn: 109878
have 4 bits per register in the operand encoding), but have undefined
behavior when the operand value is 13 or 15 (SP and PC, respectively).
The trivial coalescer in linear scan sometimes will merge a copy from
SP into a subsequent instruction which uses the copy, and if that
instruction cannot legally reference SP, we get bad code such as:
mls r0,r9,r0,sp
instead of:
mov r2, sp
mls r0, r9, r0, r2
This patch adds a new register class for use by Thumb2 that excludes
the problematic registers (SP and PC) and is used instead of GPR
for those operands which cannot legally reference PC or SP. The
trivial coalescer explicitly requires that the register class
of the destination for the COPY instruction contain the source
register for the COPY to be considered for coalescing. This prevents
errant instructions like that above.
PR7499
llvm-svn: 109842
integers with mov + vdup. 8003375. This is
currently disabled by default because LICM will
not hoist a VDUP, so it pessimizes the code if
the construct occurs inside a loop (8248029).
llvm-svn: 109799
We do sometimes load from a too small stack slot when dealing with x86 arguments
(varargs and smaller-than-32-bit args). It looks like we know what we are doing
in those cases, so I am going to remove the assert instead of artifically
enlarging stack slot sizes.
The assert in storeRegToStackSlot stays in. We don't want to write beyond the
bounds of a stack slot.
llvm-svn: 109764
The size of this object isn't used for anything - technically it is of variable
size.
This avoids a false positive from the assert in
X86InstrInfo::loadRegFromStackSlot, and fixes PR7735.
llvm-svn: 109652
subregister operands like this:
%reg1040:sub_32bit<def> = MOV32rm <fi#-2>, 1, %reg0, 0, %reg0, %reg1040<imp-def>; mem:LD4[FixedStack-2](align=8)
Make them return false when subreg operands are present. VirtRegRewriter is
making bad assumptions otherwise.
This fixes PR7713.
llvm-svn: 109489
we are using AVX and no AVX version of the desired intruction is present,
this is better for incremental dev (without fallbacks it's easier to spot
what's missing). Not sure this is the best hack thought (we can also disable
all HasSSE* predicates by dinamically marking them 'false' if AVX is present)
llvm-svn: 109434
This assumption is not satisfied due to global mergeing.
Workaround the issue by temporary disablinge mergeing of const globals.
Also, ignore LLVM "special" globals. This fixes PR7716
llvm-svn: 109423
appropriate for targets without detailed instruction iterineries.
The scheduler schedules for increased instruction level parallelism in
low register pressure situation; it schedules to reduce register pressure
when the register pressure becomes high.
On x86_64, this is a win for all tests in CFP2000. It also sped up 256.bzip2
by 16%.
llvm-svn: 109300
comments explaining why it was wrong. 8225024.
Fix the real problem in 8213383: the code that splits very large
blocks when no other place to put constants can be found was not
considering the case that the block contained a Thumb tablejump.
llvm-svn: 109282
it's too late to start backing off aggressive latency scheduling when most
of the registers are in use so the threshold should be a bit tighter.
- Correctly handle live out's and extract_subreg etc.
- Enable register pressure aware scheduling by default for hybrid scheduler.
For ARM, this is almost always a win on # of instructions. It's runtime
neutral for most of the tests. But for some kernels with high register
pressure it can be a huge win. e.g. 464.h264ref reduced number of spills by
54 and sped up by 20%.
llvm-svn: 109279
SSE, so we can't return floating point values if this
is disabled. Detect this error for clang.
With SSE1 only, f64 is a problem; it can be done, but
neither llvm-gcc nor clang has ever generated correct
code for it. Since nobody noticed this I think it's
OK to treat it as an error for now.
This also handles SSE-sized vectors of floating point.
8207686, 8204109.
llvm-svn: 109201
ARM/PPC/MSP430-specific code (which are the only targets that
implement the hook) can directly reference their target-specific
instrinfo classes.
llvm-svn: 109171
This is probably not the best way to implement "Force LR to
be spilled if the Thumb function size is > 2048." do this,
it should use the branch shortening infrastructure, but I'm
just preserving functionality here.
llvm-svn: 109165
rip out the implementation of X86InstrInfo::GetInstSizeInBytes.
The code being ripped out just implemented a copy and hacked up
version of the (old) instruction encoder, and is buggy and
terrible in other ways. Since "GetInstSizeInBytes" is really
only there to support the JIT's "NeedsExactSize" hook (which
noone is using), just rip out the code. I will rip out the
NeedsExactSize hook next.
This resolves rdar://7617809 - switch X86InstrInfo::GetInstSizeInBytes to use X86MCCodeEmitter
llvm-svn: 109149
mov pc, r1
.align 2
LJTI0_0_0:
.long LBB0_14
This fixes rdar://8213383. No test case since it's not possible to come up with a suitable small one.
llvm-svn: 109076
asmprinter or mangler around. This is option #B for killing off
X86InstrInfo::GetInstSizeInBytes. Option #A (killing
"needsexactsize") was sent for consideration to llvmdev.
llvm-svn: 109056
1) all registers were spilled as xmm, regardless of actual size
2) win64 abi doesn't do the varargs-size-in-%al thing
Still to look into:
xmm6-15 are marked as clobbered by call instructions on win64 even though they aren't.
llvm-svn: 109035
- Fix a typo for PIC check during jmp table lowering
- Also fix the "first jump table basic block is not
considered only reachable by fall through" problem, use this
ad-hoc solution until I come up with something better.
Patch by stetorvs@gmail.com
llvm-svn: 108820
of AsmPrinter and InstLowering into libx86 and out of the
asmprinter subdirectory. Now X86/AsmPrinter just depends on
MC stuff, not all of codegen and LLVM IR.
llvm-svn: 108782
instruction, we only want to allow the one for the current subtarget.
- This also fixes suffix matching for jmp instructions, because it eliminates
the ambiguity between 'jmpl' and 'jmpq'.
llvm-svn: 108746
it should set the jump table encloding the EK_Inline. This prevents
a second, unused, copy of the table from being emitted after the function
body. PR6581.
llvm-svn: 108730
it should set the jump table encloding the EK_Inline. This prevents
a second, unused, copy of the table from being emitted after the function
body. PR7499.
llvm-svn: 108722
- Currently includes a hack to limit ourselves to "In32BitMode" and "In64BitMode", because we don't have the other infrastructure to properly deal with setting SSE, etc. features on X86.
llvm-svn: 108677
- Unfortunate, but necessary for now to handle subtarget instruction matching. Eventually we should factor out the lower level target machine information so we don't need to do this.
llvm-svn: 108664
stack realignment on ARM.
Also check for function attributes as we do on X86 as well as
make explicit that we're checking can as well as needs in this function.
llvm-svn: 108582
operands.
Hopefully this fixes the llvm-gcc-powerpc-darwin9 buildbot. It really shouldn't
since missing memoperands should not affect correctness.
llvm-svn: 108540
FP_REG_KILL instructions are still inserted, but can be disabled by passing
-live-x87 to llc. The X87FPRegKillInserterPass is going to be removed shortly.
CFG edges are partioned into bundles where the x87 stack must be allocated
identically. Code is insertad at the end of each basic block that shuffles the
live FP registers to match the outgoing bundles expectations.
This fix is in preparation for some upcoming register allocator improvements
that may extend the live range of registers beyond a basic block, similar to
LICM. It also provides a nice runtime speedup if you are building with
-mfpmath=387.
llvm-svn: 108529
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
llvm-svn: 108465
this fixes rdar://8192860. Unfortunately it can only be triggered
with llc because llvm-mc matches another (correctly encoded) version
of this, so no testcase.
llvm-svn: 108454
instructions use different values (e.g., 2-byte or 4-byte alignment).
Also fix ARMInstPrinter to print these alignments as bits instead of bytes.
llvm-svn: 108386
address cannot be allocated a register is in 32-bit mode where the first
three arguments are marked inreg. In that case EAX, EDX, and ECX will be
used for argument passing.
This fixes PR7610.
llvm-svn: 108327
with this commit the callee moves to the end of
the operand array (from the start) and the call
arguments now start at index 0 (formerly 1)
this ordering is now consistent with InvokeInst
this commit only flips the switch,
functionally it is equivalent to
r101465
I intend to commit several cleanups after a few
days of soak period
llvm-svn: 108240
instructions already have implicit defs of LR. The comment suggests that
this is intended to fix something like pr6111, but it doesn't really do
that either.
llvm-svn: 108186
AggressiveAntiDepBreaker should not be using getPhysicalRegisterRegClass. An
instruction might be using a register that can only be replaced with one from
a subclass of getPhysicalRegisterRegClass.
With this patch we use getMinimalPhysRegClass. This is correct, but
conservative. We should check the uses of the register and select the
largest register class that can be used in all of them.
llvm-svn: 108122
getMinimalPhysRegClass. It was used to produce spills, and it is better to
use the most specific class if possible.
Update getLoadStoreRegOpcode to handle GR32_AD.
llvm-svn: 108115
The only folding these load/store architectures can do is converting COPY into a
load or store, and the target independent part of foldMemoryOperand already
knows how to do that.
llvm-svn: 108099
We are generating movaps for all XMM register copies, including scalar
floating point values. This is known to be at least as good as movss and movsd
for all known architectures up to and including Nehalem because it avoids a
partial register stall.
The SSEDomainFix pass will switch movaps to movdqa when appropriate (i.e., when
operands come from the integer unit). We don't now that switching movaps to
movapd has any benefit.
The same applies to andps -> pand.
llvm-svn: 108096
assert()s, switching to void-casts. Removed an unneeded Compiler.h include as
a result. There are two other uses in LLVM, but they're not due to assert()s,
so I've left them alone.
llvm-svn: 108088
Don't try a cross-class copy. That is very unlikely anywy since return value
registers are usually register class friendly. (%EAX, %XMM0, etc).
llvm-svn: 108074
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
llvm-svn: 108072
The remaining copyRegToReg calls actually check the return value (shock!), so we
cannot trivially replace them with COPY instructions.
llvm-svn: 108069
Based on a patch by Rafael Espíndola.
Attempt to make the FpSET_ST1 hack more robust, but we are still relying on
FpSET_ST0 preceeding it. This is only for supporting really weird x87 inline
asm.
We support:
FpSET_ST0
INLINEASM
FpSET_ST0
FpSET_ST1
INLINEASM
with and without kills on the arguments. We don't support:
FpSET_ST1
FpSET_ST0
INLINEASM
nor
FpSET_ST1
INLINEASM
Just Don't Do It!
llvm-svn: 108047
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
llvm-svn: 108039
it is popped, even if it is ununsed. A CopyFromReg node is too weak to represent
the required sideeffect, so insert an FpGET_ST0 instruction directly instead.
This will matter when CopyFromReg gets lowered to a generic COPY instruction.
llvm-svn: 108037
notes:
- The instructions are being added with dummy placeholder patterns using some 256
specifiers, this is not meant to work now, but since there are some multiclasses
generic enough to accept them, when we go for codegen, the stuff will be already
there.
- Add VEX encoding bits to support YMM
- Add MOVUPS and MOVAPS in the first round
- Use "Y" as suffix for those Instructions: MOVUPSYrr, ...
- All AVX instructions in X86InstrSSE.td will move soon to a new X86InstrAVX
file.
llvm-svn: 107996
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
llvm-svn: 107987
jumps where possible and turning the TAILCALL marker in the instruction
asm string into a proper comment.
This eliminates a FIXME and is on the path to finishing:
rdar://7639610 - eliminate encoding and asm info for TAILJMPd TAILJMPr TAILJMPn, etc.
However, I can't eliminate the encodings for these instructions because the JIT
still exists and has its own copy of the encoder, sigh.
llvm-svn: 107946
like all other instructions, even though a segment is not
allowed. This resolves a bunch of gross hacks in the
encoder and makes LEA more consistent with the rest of the
instruction set.
No functionality change.
llvm-svn: 107934
in memory operands at the same type as hard coded segments.
This fixes problems where we'd emit the segment override after
the REX prefix on instructions like:
mov %gs:(%rdi), %rax
This fixes rdar://8127102. I have several cleanup patches coming
next.
llvm-svn: 107917
returns the start of the memory operand for an instruction.
Introduce a new "X86AddrSegment" enum to reduce # magic numbers
referring to X86 memory operand layout.
llvm-svn: 107916
This pass runs before COPY instructions are passed to copyPhysReg, so we simply
translate COPY to the proper pseudo instruction. Note that copyPhysReg does not
handle floating point stack copies.
Once COPY is used everywhere, this can be cleaned up a bit, and most of the
pseudo instructions can be removed.
llvm-svn: 107899