getModuleContainingLocation ends up on the hot-path for typical C code
which can lead to calls to getFileIDSlow.
To speed this up, short circuit inferModuleFromLocation when there
aren't any modules, implicit or otherwise.
This shaves 4-5% build time when building the linux kernel.
llvm-svn: 269687
Clang performs directory walk while searching headers inside modules by
using the ::sys::fs instead of ::vfs. This prevents any code that uses
the VFS (e.g, reproducer scripts) to actually find such headers, since
the VFS will never be searched for those.
Change these places to use vfs::recursive_directory_iterator and
vfs::directory_iterator instead.
Differential Revision: http://reviews.llvm.org/D20266
rdar://problem/25880368
llvm-svn: 269661
(1) Collect headers under inner frameworks (frameworks inside other
other frameworks).
(2) Make sure we also collect the right header files inside them.
More info on (2):
Consider a dummy framework module B, with header Frameworks/B/B.h. Now
consider that another framework A, with header Frameworks/A/A.h, has a
layout with a inner framework Frameworks/A/Frameworks/B/B.h, where the
"B/B.h" part is a symlink for Frameworks/B/B.h. Also assume that
Frameworks/A/A.h includes <B/B.h>.
When parsing header Frameworks/A/A.h, framework module lookup is
performed in search for B, and it happens that
"Frameworks/A/Frameworks/B/B.h" path is registered in the module instead
of real "Frameworks/B/B.h". This occurs because
"Frameworks/A/Frameworks/B/B.h" is scanned first by the FileManager,
when looking for inner framework modules under Frameworks/A/Frameworks.
This makes Frameworks/A/Frameworks/B/B.h the default cached named inside
the FileManager for the B.h file UID.
This leads to modules being built without consistent paths to underlying
header files. This is usually not a problem in regular compilation flow,
but it's an issue when running the crash reproducer. The issue is that
clangs collect "Frameworks/A/Frameworks/B/B.h" but not
"Frameworks/B/B.h" into the VFS, leading to err_mmap_umbrella_clash. So
make sure we also collect the original header.
Differential Revision: http://reviews.llvm.org/D20194
rdar://problem/25880368
llvm-svn: 269502
Use a StringRef instead of a FileEntry in the moduleMapAddHeader
callback to allow more flexibility on what to collect on further
patches. This changes the interface I introduced in r264971.
llvm-svn: 268819
The current ModuleDependencyCollector has a AST listener to collect
header files present in loaded modules, but this isn't enough to collect
all headers needed in the crash reproducer. One of the reasons is that
the AST writer doesn't write symbolic link header paths in the pcm modules,
this makes the listeners on the reader only able to collect the real files.
Since the module maps could contain submodules that use headers which
are symbolic links, not collecting those forbid the reproducer scripts
to regen the modules.
For instance:
usr/include/module.map:
...
module pthread {
header "pthread.h"
export *
module impl {
header "pthread_impl.h"
export *
}
}
...
usr/include/pthread/pthread_impl.h
usr/include/pthread_impl.h -> pthread/pthread_impl.h
The AST dump for the module above:
<SUBMODULE_HEADER abbrevid=6/> blob data = 'pthread_impl.h'
<SUBMODULE_TOPHEADER abbrevid=7/> blob data = '/<path_to_sdk>/usr/include/pthread/pthread_impl.h'
Note that we don't have "usr/include/pthread_impl.h" which is requested
by the module.map in case we want to reconstruct the module in the
reproducer. The reason the original symbolic link path isn't used is
because the headers are kept by name and requested through the
FileManager, which unique files and returns the real path only.
To fix that, add a callback to be invoked everytime a header is added
while parsing module maps and hook that up to the module dependecy
collector. This callback is only registered when generating the
reproducer.
Differential Revision: http://reviews.llvm.org/D18585
rdar://problem/24499339
llvm-svn: 264971
Since it's provided by the compiler. This allows a system module map
file to declare a module for it.
No test change for cstd.m, since stdatomic.h doesn't function without a
relatively complete stdint.h and stddef.h, which tests using this module
don't provide.
rdar://problem/24931246
llvm-svn: 263076
option. Previously these options could both be used to specify that you were
compiling the implementation file of a module, with a different set of minor
bugs in each case.
This change removes -fmodule-implementation-of, and instead tracks a flag to
determine whether we're currently building a module. -fmodule-name now behaves
the same way that -fmodule-implementation-of previously did.
llvm-svn: 261372
When linking against text-based dynamic library SDKs the library name of a
framework has now more than one possible filename extensions. This fix tests for
both possible extensions (none, and .tbd).
This fixes rdar://problem/20609975
llvm-svn: 253060
Summary:
If a module was unavailable (either a missing requirement on the module
being imported, or a missing file anywhere in the top-level module (and
not dominated by an unsatisfied `requires`)), we would silently treat
inclusions as textual. This would cause all manner of crazy and
confusing errors (and would also silently "work" sometimes, making the
problem difficult to track down).
I'm really not a fan of the `M->isAvailable(getLangOpts(), getTargetInfo(),
Requirement, MissingHeader)` function; it seems to do too many things at
once, but for now I've done things in a sort of awkward way.
The changes to test/Modules/Inputs/declare-use/module.map
were necessitated because the thing that was meant to be tested there
(introduced in r197805) was predicated on silently falling back to textual
inclusion, which we no longer do.
The changes to test/Modules/Inputs/macro-reexport/module.modulemap
are just an overlooked missing header that seems to have been missing since
this code was committed (r213922), which is now caught.
Reviewers: rsmith, benlangmuir, djasper
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10423
llvm-svn: 245228
This preserves backwards compatibility for two hacks in the Darwin
system module map files:
1. The use of 'requires excluded' to make headers non-modular, which
should really be mapped to 'textual' now that we have this feature.
2. Silently removes a bogus cplusplus requirement from IOKit.avc.
Once we start diagnosing missing requirements and headers on
auto-imports these would have broken compatibility with existing Darwin
SDKs.
llvm-svn: 244912
We use findModuleForHeader() in several places, but in header search we
were not calling it when a framework module didn't show up with the
expected name, which would then lead to unexpected non-modular includes.
Now we will find the module unconditionally for frameworks. For regular
frameworks, we use the spelling of the module name from the module map
file, and for inferred ones we use the canonical directory name.
In the future we might want to lock down framework modules sufficiently
that these name mismatches cannot happen.
rdar://problem/20465870
llvm-svn: 241258
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
We used to have a flag to enable module maps, and two more flags to enable
implicit module maps. This is all redundant; we don't need any flag for
enabling module maps in the abstract, and we don't usually have -fno- flags for
-cc1. We now have just a single flag, -fimplicit-module-maps, that enables
implicitly searching the file system for module map files and loading them.
The driver interface is unchanged for now. We should probably rename
-fmodule-maps to -fimplicit-module-maps at some point.
llvm-svn: 239789
The RequestingModule argument was unused and always its default value of
nullptr.
Also move a declaration closer to its use, and range-for'ify.
llvm-svn: 239453
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
Now that SmallString is a first-class citizen, most SmallString::str()
calls are not required. This patch removes a whole bunch of them, yet
there are lots more.
There are two use cases where str() is really needed:
1) To use one of StringRef member functions which is not available in
SmallString.
2) To convert to std::string, as StringRef implicitly converts while
SmallString do not. We may wish to change this, but it may introduce
ambiguity.
llvm-svn: 232622
check that private headers are in a list matching the role. (We can't perform
the opposite checks for non-private headers because we infer those.)
llvm-svn: 231728
If a module map contains
framework module * [extern_c] {}
We will now infer [extern_c] on the inferred framework modules (we
already inferred [system] as a special case).
llvm-svn: 225803
Original commit message:
[modules] Add experimental -fmodule-map-file-home-is-cwd flag to -cc1.
For files named by -fmodule-map-file=, and files found by 'extern module'
directives, this flag specifies that we should resolve filenames relative to
the current working directory rather than relative to the directory in which
the module map file resides. This is aimed at fixing path handling, in
particular for relative -I paths, when building modules that represent
components of the current project (rather than libraries installed on the
current system, which the current project has as dependencies, where we'd
typically expect the module map files to be looked up implicitly).
llvm-svn: 223913
For files named by -fmodule-map-file=, and files found by 'extern module'
directives, this flag specifies that we should resolve filenames relative to
the current working directory rather than relative to the directory in which
the module map file resides. This is aimed at fixing path handling, in
particular for relative -I paths, when building modules that represent
components of the current project (rather than libraries installed on the
current system, which the current project has as dependencies, where we'd
typically expect the module map files to be looked up implicitly).
llvm-svn: 223753
rather than trying to extract this information from the FileEntry after the
fact.
This has a number of beneficial effects. For instance, diagnostic messages for
failed module builds give a path relative to the "module root" rather than an
absolute file path, and the contents of the module includes file is no longer
dependent on what files the including TU happened to inspect prior to
triggering the module build.
llvm-svn: 223095