The `MockAllocator` used in `ScudoTSDTest` wasn't allocated
properly aligned, which resulted in the `TSDs` of the shared
registry not being aligned either. This lead to some failures
like: https://reviews.llvm.org/D103119#2822008
This changes how the `MockAllocator` is allocated, same as
Vitaly did in the combined tests, properly aligning it, which
results in the `TSDs` being aligned as well.
Add a `DCHECK` in the shared registry to check that it is.
Differential Revision: https://reviews.llvm.org/D104402
trusty.cpp and trusty.h define Trusty implementations of map and other
platform-specific functions. In addition to adding Trusty configurations
in allocator_config.h and size_class_map.h, MapSizeIncrement and
PrimaryEnableRandomOffset are added as configurable options in
allocator_config.h.
Background on Trusty: https://source.android.com/security/trusty
Differential Revision: https://reviews.llvm.org/D103578
Some platforms (eg: Trusty) are extremelly memory constrained, which
doesn't necessarily work well with some of Scudo's current assumptions.
`Vector` by default (and as such `String` and `ScopedString`) maps a
page, which is a bit of a waste. This CL changes `Vector` to use a
buffer local to the class first, then potentially map more memory if
needed (`ScopedString` currently are all stack based so it would be
stack data). We also want to allow a platform to prevent any dynamic
resizing, so I added a `CanGrow` templated parameter that for now is
always `true` but would be set to `false` on Trusty.
Differential Revision: https://reviews.llvm.org/D103641
Now that everything is forcibly linker initialized, it feels like a
good time to get rid of the `init`/`initLinkerInitialized` split.
This allows to get rid of various `memset` construct in `init` that
gcc complains about (this fixes a Fuchsia open issue).
I added various `DCHECK`s to ensure that we would get a zero-inited
object when entering `init`, which required ensuring that
`unmapTestOnly` leaves the object in a good state (tests are currently
the only location where an allocator can be "de-initialized").
Running the tests with `--gtest_repeat=` showed no issue.
Differential Revision: https://reviews.llvm.org/D103119
While attempting to roll the latest Scudo in Fuchsia, some issues
arose. While trying to debug them, it appeared that `DCHECK`s were
also never exercised in Fuchsia. This CL fixes the following
problems:
- the size of a block in the TransferBatch class must be a multiple
of the compact pointer scale. In some cases, it wasn't true, which
lead to obscure crashes. Now, we round up `sizeof(TransferBatch)`.
This only materialized in Fuchsia due to the specific parameters
of the `DefaultConfig`;
- 2 `DCHECK` statements in Fuchsia were incorrect;
- `map()` & co. require a size multiple of a page (as enforced in
Fuchsia `DCHECK`s), which wasn't the case for `PackedCounters`.
- In the Secondary, a parameter was marked as `UNUSED` while it is
actually used.
Differential Revision: https://reviews.llvm.org/D100524
This patch enhances the secondary allocator to be able to detect buffer
overflow, and (on hardware supporting memory tagging) use-after-free
and buffer underflow.
Use-after-free detection is implemented by setting memory page
protection to PROT_NONE on free. Because this must be done immediately
rather than after the memory has been quarantined, we no longer use the
combined allocator quarantine for secondary allocations. Instead, a
quarantine has been added to the secondary allocator cache.
Buffer overflow detection is implemented by aligning the allocation
to the right of the writable pages, so that any overflows will
spill into the guard page to the right of the allocation, which
will have PROT_NONE page protection. Because this would require the
secondary allocator to produce a header at the correct position,
the responsibility for ensuring chunk alignment has been moved to
the secondary allocator.
Buffer underflow detection has been implemented on hardware supporting
memory tagging by tagging the memory region between the start of the
mapping and the start of the allocation with a non-zero tag. Due to
the cost of pre-tagging secondary allocations and the memory bandwidth
cost of tagged accesses, the allocation itself uses a tag of 0 and
only the first four pages have memory tagging enabled.
This is a reland of commit 7a0da88943 which was reverted in commit
9678b07e42. This reland includes the following changes:
- Fix the calculation of BlockSize which led to incorrect statistics
returned by mallinfo().
- Add -Wno-pedantic to silence GCC warning.
- Optionally add some slack at the end of secondary allocations to help
work around buggy applications that read off the end of their
allocation.
Differential Revision: https://reviews.llvm.org/D93731
This CL introduces configuration options to allow pointers to be
compacted in the thread-specific caches and transfer batches. This
offers the possibility to have them use 32-bit of space instead of
64-bit for the 64-bit Primary, thus cutting the size of the caches
and batches by nearly half (and as such the memory used in size
class 0). The cost is an additional read from the region information
in the fast path.
This is not a new idea, as it's being used in the sanitizer_common
64-bit primary. The difference here is that it is configurable via
the allocator config, with the possibility of not compacting at all.
This CL enables compacting pointers in the Android and Fuchsia default
configurations.
Differential Revision: https://reviews.llvm.org/D96435
This patch enhances the secondary allocator to be able to detect buffer
overflow, and (on hardware supporting memory tagging) use-after-free
and buffer underflow.
Use-after-free detection is implemented by setting memory page
protection to PROT_NONE on free. Because this must be done immediately
rather than after the memory has been quarantined, we no longer use the
combined allocator quarantine for secondary allocations. Instead, a
quarantine has been added to the secondary allocator cache.
Buffer overflow detection is implemented by aligning the allocation
to the right of the writable pages, so that any overflows will
spill into the guard page to the right of the allocation, which
will have PROT_NONE page protection. Because this would require the
secondary allocator to produce a header at the correct position,
the responsibility for ensuring chunk alignment has been moved to
the secondary allocator.
Buffer underflow detection has been implemented on hardware supporting
memory tagging by tagging the memory region between the start of the
mapping and the start of the allocation with a non-zero tag. Due to
the cost of pre-tagging secondary allocations and the memory bandwidth
cost of tagged accesses, the allocation itself uses a tag of 0 and
only the first four pages have memory tagging enabled.
Differential Revision: https://reviews.llvm.org/D93731
The primary and secondary allocators will need to share this bit,
so move the management of the bit to the combined allocator and
make useMemoryTagging() a free function.
Differential Revision: https://reviews.llvm.org/D93730
Initially we were avoiding the release of smaller size classes due to
the fact that it was an expensive operation, particularly on 32-bit
platforms. With a lot of batches, and given that there are a lot of
blocks per page, this was a lengthy operation with little results.
There has been some improvements since then to the 32-bit release,
and we still have some criterias preventing us from wasting time
(eg, 9x% free blocks in the class size, etc).
Allowing to release blocks < 128 bytes helps in situations where a lot
of small chunks would not have been reclaimed if not for a forced
reclaiming.
Additionally change some `CHECK` to `DCHECK` and rearrange a bit the
code.
I didn't experience any regressions in my benchmarks.
Differential Revision: https://reviews.llvm.org/D93141
`populateFreelist` was more complicated that it needed to be. We used
to call to `populateBatches` that would do some internal shuffling and
add pointers one by one to the batches, but ultimately this was not
needed. We can get rid of `populateBatches`, and do processing in
bulk. This doesn't necessarily make things faster as this is not on the
hot path, but it makes the function cleaner.
Additionally clean up a couple of items, like `UNLIKELY`s and setting
`Exhausted` to `false` which can't happen.
Differential Revision: https://reviews.llvm.org/D90700
- we have clutter-reducing helpers for relaxed atomics that were barely
used, use them everywhere we can
- clang-format everything with a recent version
Differential Revision: https://reviews.llvm.org/D90649
Move some of the flags previously in Options, as well as the
UseMemoryTagging flag previously in the primary allocator, into an
atomic variable so that it can be updated while other threads are
running. Relaxed accesses are used because we only have the requirement
that the other threads see the new value eventually.
The code is set up so that the variable is generally loaded once per
allocation function call with the exception of some rarely used code
such as error handlers. The flag bits can generally stay in a register
during the execution of the allocation function which means that they
can be branched on with minimal overhead (e.g. TBZ on aarch64).
Differential Revision: https://reviews.llvm.org/D88523
With the 'new' way of releasing on 32-bit, we iterate through all the
regions in between `First` and `Last`, which covers regions that do not
belong to the class size we are working with. This is effectively wasted
cycles.
With this change, we add a `SkipRegion` lambda to `releaseFreeMemoryToOS`
that will allow the release function to know when to skip a region.
For the 64-bit primary, since we are only working with 1 region, we never
skip.
Reviewed By: hctim
Differential Revision: https://reviews.llvm.org/D86399
Summary:
Partners have requested the ability to configure more parts of Scudo
at runtime, notably the Secondary cache options (maximum number of
blocks cached, maximum size) as well as the TSD registry options
(the maximum number of TSDs in use).
This CL adds a few more Scudo specific `mallopt` parameters that are
passed down to the various subcomponents of the Combined allocator.
- `M_CACHE_COUNT_MAX`: sets the maximum number of Secondary cached items
- `M_CACHE_SIZE_MAX`: sets the maximum size of a cacheable item in the Secondary
- `M_TSDS_COUNT_MAX`: sets the maximum number of TSDs that can be used (Shared Registry only)
Regarding the TSDs maximum count, this is a one way option, only
allowing to increase the count.
In order to allow for this, I rearranged the code to have some `setOption`
member function to the relevant classes, using the `scudo::Option` class
enum to determine what is to be set.
This also fixes an issue where a static variable (`Ready`) was used in
templated functions without being set back to `false` every time.
Reviewers: pcc, eugenis, hctim, cferris
Subscribers: jfb, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D84667
Summary:
On 32-b, the release algo loops multiple times over the freelist for a size
class, which lead to a decrease in performance when there were a lot of free
blocks.
This changes the release functions to loop only once over the freelist, at the
cost of using a little bit more memory for the release process: instead of
working on one region at a time, we pass the whole memory area covered by all
the regions for a given size class, and work on sub-areas of `RegionSize` in
this large area. For 64-b, we just have 1 sub-area encompassing the whole
region. Of course, not all the sub-areas within that large memory area will
belong to the class id we are working on, but those will just be left untouched
(which will not add to the RSS during the release process).
Reviewers: pcc, cferris, hctim, eugenis
Subscribers: llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D83993
Summary:
Releasing smaller blocks is costly and only yields significant
results when there is a large percentage of free bytes for a given
size class (see numbers below).
This CL introduces a couple of additional checks for sizes lower
than 256. First we want to make sure that there is enough free bytes,
relatively to the amount of allocated bytes. We are looking at 8X% to
9X% (smaller blocks require higher percentage). We also want to make
sure there has been enough activity with the freelist to make it
worth the time, so we now check that the bytes pushed to the freelist
is at least 1/16th of the allocated bytes for those classes.
Additionally, we clear batches before destroying them now - this
could have prevented some releases to occur (class id 0 rarely
releases anyway).
Here are the numbers, for about 1M allocations in multiple threads:
Size: 16
85% freed -> 0% released
86% freed -> 0% released
87% freed -> 0% released
88% freed -> 0% released
89% freed -> 0% released
90% freed -> 0% released
91% freed -> 0% released
92% freed -> 0% released
93% freed -> 0% released
94% freed -> 0% released
95% freed -> 0% released
96% freed -> 0% released
97% freed -> 2% released
98% freed -> 7% released
99% freed -> 27% released
Size: 32
85% freed -> 0% released
86% freed -> 0% released
87% freed -> 0% released
88% freed -> 0% released
89% freed -> 0% released
90% freed -> 0% released
91% freed -> 0% released
92% freed -> 0% released
93% freed -> 0% released
94% freed -> 0% released
95% freed -> 1% released
96% freed -> 3% released
97% freed -> 7% released
98% freed -> 17% released
99% freed -> 41% released
Size: 48
85% freed -> 0% released
86% freed -> 0% released
87% freed -> 0% released
88% freed -> 0% released
89% freed -> 0% released
90% freed -> 0% released
91% freed -> 0% released
92% freed -> 0% released
93% freed -> 0% released
94% freed -> 1% released
95% freed -> 3% released
96% freed -> 7% released
97% freed -> 13% released
98% freed -> 27% released
99% freed -> 52% released
Size: 64
85% freed -> 0% released
86% freed -> 0% released
87% freed -> 0% released
88% freed -> 0% released
89% freed -> 0% released
90% freed -> 0% released
91% freed -> 0% released
92% freed -> 1% released
93% freed -> 2% released
94% freed -> 3% released
95% freed -> 6% released
96% freed -> 11% released
97% freed -> 20% released
98% freed -> 35% released
99% freed -> 59% released
Size: 80
85% freed -> 0% released
86% freed -> 0% released
87% freed -> 0% released
88% freed -> 0% released
89% freed -> 0% released
90% freed -> 1% released
91% freed -> 1% released
92% freed -> 2% released
93% freed -> 4% released
94% freed -> 6% released
95% freed -> 10% released
96% freed -> 17% released
97% freed -> 26% released
98% freed -> 41% released
99% freed -> 64% released
Size: 96
85% freed -> 0% released
86% freed -> 0% released
87% freed -> 0% released
88% freed -> 0% released
89% freed -> 1% released
90% freed -> 1% released
91% freed -> 3% released
92% freed -> 4% released
93% freed -> 6% released
94% freed -> 10% released
95% freed -> 14% released
96% freed -> 21% released
97% freed -> 31% released
98% freed -> 47% released
99% freed -> 68% released
Size: 112
85% freed -> 0% released
86% freed -> 1% released
87% freed -> 1% released
88% freed -> 2% released
89% freed -> 3% released
90% freed -> 4% released
91% freed -> 6% released
92% freed -> 8% released
93% freed -> 11% released
94% freed -> 16% released
95% freed -> 22% released
96% freed -> 30% released
97% freed -> 40% released
98% freed -> 55% released
99% freed -> 74% released
Size: 128
85% freed -> 0% released
86% freed -> 1% released
87% freed -> 1% released
88% freed -> 2% released
89% freed -> 3% released
90% freed -> 4% released
91% freed -> 6% released
92% freed -> 8% released
93% freed -> 11% released
94% freed -> 16% released
95% freed -> 22% released
96% freed -> 30% released
97% freed -> 40% released
98% freed -> 55% released
99% freed -> 74% released
Size: 144
85% freed -> 1% released
86% freed -> 2% released
87% freed -> 3% released
88% freed -> 4% released
89% freed -> 6% released
90% freed -> 7% released
91% freed -> 10% released
92% freed -> 13% released
93% freed -> 17% released
94% freed -> 22% released
95% freed -> 28% released
96% freed -> 37% released
97% freed -> 47% released
98% freed -> 61% released
99% freed -> 78% released
Size: 160
85% freed -> 1% released
86% freed -> 2% released
87% freed -> 3% released
88% freed -> 4% released
89% freed -> 5% released
90% freed -> 7% released
91% freed -> 10% released
92% freed -> 13% released
93% freed -> 17% released
94% freed -> 22% released
95% freed -> 28% released
96% freed -> 37% released
97% freed -> 47% released
98% freed -> 61% released
99% freed -> 78% released
Size: 176
85% freed -> 2% released
86% freed -> 3% released
87% freed -> 4% released
88% freed -> 6% released
89% freed -> 7% released
90% freed -> 9% released
91% freed -> 12% released
92% freed -> 15% released
93% freed -> 20% released
94% freed -> 25% released
95% freed -> 32% released
96% freed -> 40% released
97% freed -> 51% released
98% freed -> 64% released
99% freed -> 80% released
Size: 192
85% freed -> 4% released
86% freed -> 5% released
87% freed -> 6% released
88% freed -> 8% released
89% freed -> 10% released
90% freed -> 13% released
91% freed -> 16% released
92% freed -> 20% released
93% freed -> 24% released
94% freed -> 30% released
95% freed -> 37% released
96% freed -> 45% released
97% freed -> 55% released
98% freed -> 68% released
99% freed -> 82% released
Size: 224
85% freed -> 8% released
86% freed -> 10% released
87% freed -> 12% released
88% freed -> 14% released
89% freed -> 17% released
90% freed -> 20% released
91% freed -> 23% released
92% freed -> 28% released
93% freed -> 33% released
94% freed -> 39% released
95% freed -> 46% released
96% freed -> 53% released
97% freed -> 63% released
98% freed -> 73% released
99% freed -> 85% released
Size: 240
85% freed -> 8% released
86% freed -> 10% released
87% freed -> 12% released
88% freed -> 14% released
89% freed -> 17% released
90% freed -> 20% released
91% freed -> 23% released
92% freed -> 28% released
93% freed -> 33% released
94% freed -> 39% released
95% freed -> 46% released
96% freed -> 54% released
97% freed -> 63% released
98% freed -> 73% released
99% freed -> 85% released
Reviewers: cferris, pcc, hctim, eugenis
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D82031
Introduce a function __scudo_get_error_info() that may be called to interpret
a crash resulting from a memory error, potentially in another process,
given information extracted from the crashing process. The crash may be
interpreted as a use-after-free, buffer overflow or buffer underflow.
Also introduce a feature to optionally record a stack trace for each
allocation and deallocation. If this feature is enabled, a stack trace for
the allocation and (if applicable) the deallocation will also be available
via __scudo_get_error_info().
Differential Revision: https://reviews.llvm.org/D77283
Summary:
For the 32b primary, whenever we created a region, we would fill it
all at once (eg: create all the transfer batches for all the blocks
in that region). This wasn't ideal as all the potential blocks in
a newly created region might not be consummed right away, and it was
using extra memory (and release cycles) to keep all those free
blocks.
So now we keep track of the current region for a given class, and
how filled it is, carving out at most `MaxNumBatches` worth of
blocks at a time.
Additionally, lower `MaxNumBatches` on Android from 8 to 4. This
lowers the randomness of blocks, which isn't ideal for security, but
keeps things more clumped up for PSS/RSS accounting purposes.
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D75551
Summary:
This patch includes several changes to reduce the overall footprint
of the allocator:
- for realloc'd chunks: only keep the same chunk when lowering the size
if the delta is within a page worth of bytes;
- when draining a cache: drain the beginning, not the end; we add pointers
at the end, so that meant we were draining the most recently added
pointers;
- change the release code to account for an freed up last page: when
scanning the pages, we were looking for pages fully covered by blocks;
in the event of the last page, if it's only partially covered, we
wouldn't mark it as releasable - even what follows the last chunk is
all 0s. So now mark the rest of the page as releasable, and adapt the
test;
- add a missing `setReleaseToOsIntervalMs` to the cacheless secondary;
- adjust the Android classes based on more captures thanks to pcc@'s
tool.
Reviewers: pcc, cferris, hctim, eugenis
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D75142
Summary:
Most of our larger data is dynamically allocated (via `map`) but it
became an hindrance with regard to init time, for a cost to benefit
ratio that is not great. So change the `TSD`s, `RegionInfo`, `ByteMap`
to be static.
Additionally, for reclaiming, we used mapped & unmapped a buffer each
time, which is costly. It turns out that we can have a static buffer,
and that there isn't much contention on it.
One of the other things changed here, is that we hard set the number
of TSDs on Android to the maximum number, as there could be a
situation where cores are put to sleep and we could miss some.
Subscribers: mgorny, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D74696
Summary:
Add a method to set the release to OS value as the system runs,
and allow this to be set differently in the primary and the secondary.
Also, add a default value to use for primary and secondary. This
allows Android to have a default that is different for
primary/secondary.
Update mallopt to support setting the release to OS value.
Reviewers: pcc, cryptoad
Reviewed By: cryptoad
Subscribers: cryptoad, jfb, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D74448
Summary:
This changes a couple of parameters in the default Android config to
address some performance and memory footprint issues (well to be closer
to the default Bionic allocator numbers).
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D73750
Summary:
The Secondary's cache needs to be released when the Combined's
`releaseToOS` function is called (via `M_PURGE`) for example,
which this CL adds.
Additionally, if doing a forced release, we'll release the
transfer batch class as well since now we can do that.
There is a couple of other house keeping changes as well:
- read the page size only once in the Secondary Cache `store`
- remove the interval check for `CanRelease`: we are going to
make that configurable via `mallopt` so this needs not be
set in stone there.
Reviewers: cferris, hctim, pcc, eugenis
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D73730
Summary:
A couple of seemingly innocuous changes ended up having a large impact
on the 32-bit performance. I still have to make those configurable at
some point, but right now it will have to do.
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D73658
Summary:
This CL changes multiple things to improve performance (notably on
Android).We introduce a cache class for the Secondary that is taking
care of this mechanism now.
The changes:
- change the Secondary "freelist" to an array. By keeping free secondary
blocks linked together through their headers, we were keeping a page
per block, which isn't great. Also we know touch less pages when
walking the new "freelist".
- fix an issue with the freelist getting full: if the pattern is an ever
increasing size malloc then free, the freelist would fill up and
entries would not be used. So now we empty the list if we get to many
"full" events;
- use the global release to os interval option for the secondary: it
was too costly to release all the time, particularly for pattern that
are malloc(X)/free(X)/malloc(X). Now the release will only occur
after the selected interval, when going through the deallocate path;
- allow release of the `BatchClassId` class: it is releasable, we just
have to make sure we don't mark the batches containing batches
pointers as free.
- change the default release interval to 1s for Android to match the
current Bionic allocator configuration. A patch is coming up to allow
changing it through `mallopt`.
- lower the smallest class that can be released to `PageSize/64`.
Reviewers: cferris, pcc, eugenis, morehouse, hctim
Subscribers: phosek, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D73507
When the hardware and operating system support the ARM Memory Tagging
Extension, tag primary allocation granules with a random tag. The granules
either side of the allocation are tagged with tag 0, which is normally
excluded from the set of tags that may be selected randomly. Memory is
also retagged with a random tag when it is freed, and we opportunistically
reuse the new tag when the block is reused to reduce overhead. This causes
linear buffer overflows to be caught deterministically and non-linear buffer
overflows and use-after-free to be caught probabilistically.
This feature is currently only enabled for the Android allocator
and depends on an experimental Linux kernel branch available here:
https://github.com/pcc/linux/tree/android-experimental-mte
All code that depends on the kernel branch is hidden behind a macro,
ANDROID_EXPERIMENTAL_MTE. This is the same macro that is used by the Android
platform and may only be defined in non-production configurations. When the
userspace interface is finalized the code will be updated to use the stable
interface and all #ifdef ANDROID_EXPERIMENTAL_MTE will be removed.
Differential Revision: https://reviews.llvm.org/D70762
Summary:
fork() wasn't well (or at all) supported in Scudo. This materialized
in deadlocks in children.
In order to properly support fork, we will lock the allocator pre-fork
and unlock it post-fork in parent and child. This is done via a
`pthread_atfork` call installing the necessary handlers.
A couple of things suck here: this function allocates - so this has to
be done post initialization as our init path is not reentrance, and it
doesn't allow for an extra pointer - so we can't pass the allocator we
are currently working with.
In order to work around this, I added a post-init template parameter
that gets executed once the allocator is initialized for the current
thread. Its job for the C wrappers is to install the atfork handlers.
I reorganized a bit the impacted area and added some tests, courtesy
of cferris@ that were deadlocking prior to this fix.
Subscribers: jfb, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D72470
The macros INLINE and COMPILER_CHECK always expand to the same thing (inline
and static_assert respectively). Both expansions are standards compliant C++
and are used consistently in the rest of LLVM, so let's improve consistency
with the rest of LLVM by replacing them with the expansions.
Differential Revision: https://reviews.llvm.org/D70793
Summary:
A few small improvements and optimizations:
- when refilling the free list, push back the last batch and return
the front one: this allows to keep the allocations towards the front
of the region;
- instead of using 48 entries in the shuffle array, use a multiple of
`MaxNumCached`;
- make the maximum number of batches to create on refil a constant;
ultimately it should be configurable, but that's for later;
- `initCache` doesn't need to zero out the cache, it's already done.
- it turns out that when using `||` or `&&`, the compiler is adamant
on adding a short circuit for every part of the expression. Which
ends up making somewhat annoying asm with lots of test and
conditional jump. I am changing that to bitwise `|` or `&` in two
place so that the generated code looks better. Added comments since
it might feel weird to people.
This yields to some small performance gains overall, nothing drastic
though.
Reviewers: hctim, morehouse, cferris, eugenis
Subscribers: #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D70452
Summary:
This is a clean patch using the last diff of D69265, but using git
instead of svn, since svn went ro and arc was making my life harded
than it needed to be.
I was going to introduce a couple more lists and realized that our
lists are currently a bit all over the place. While we have a singly
linked list type relatively well defined, we are using doubly linked
lists defined on the fly for the stats and for the secondary blocks.
This CL adds a doubly linked list object, reorganizing the singly list
one to extract as much of the common code as possible. We use this
new type in the stats and the secondary. We also reorganize the list
tests to benefit from this consolidation.
There are a few side effect changes such as using for iterator loops
that are, in my opinion, cleaner in a couple of places.
Reviewers: hctim, morehouse, pcc, cferris
Reviewed By: hctim
Subscribers: jfb, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D69516
Summary:
Following up on D68471, this CL introduces some `getStats` APIs to
gather statistics in char buffers (`ScopedString` really) instead of
printing them out right away. Ultimately `printStats` will just
output the buffer, but that allows us to potentially do some work
on the intermediate buffer, and can be used for a `mallocz` type
of functionality. This allows us to pretty much get rid of all the
`Printf` calls around, but I am keeping the function in for
debugging purposes.
This changes the existing tests to use the new APIs when required.
I will add new tests as suggested in D68471 in another CL.
Reviewers: morehouse, hctim, vitalybuka, eugenis, cferris
Reviewed By: morehouse
Subscribers: delcypher, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D68653
llvm-svn: 374173
Summary:
There was an issue in `releaseToOSMaybe`: one of the criteria to
decide if we should proceed with the release was wrong. Namely:
```
const uptr N = Sci->Stats.PoppedBlocks - Sci->Stats.PushedBlocks;
if (N * BlockSize < PageSize)
return; // No chance to release anything.
```
I meant to check if the amount of bytes in the free list was lower
than a page, but this actually checks if the amount of **in use** bytes
was lower than a page.
The correct code is:
```
const uptr BytesInFreeList =
Region->AllocatedUser -
(Region->Stats.PoppedBlocks - Region->Stats.PushedBlocks) * BlockSize;
if (BytesInFreeList < PageSize)
return 0; // No chance to release anything.
```
Consequences of the bug:
- if a class size has less than a page worth of in-use bytes (allocated
or in a cache), reclaiming would not occur, whatever the amount of
blocks in the free list; in real world scenarios this is unlikely to
happen and be impactful;
- if a class size had less than a page worth of free bytes (and enough
in-use bytes, etc), then reclaiming would be attempted, with likely
no result. This means the reclaiming was overzealous at times.
I didn't have a good way to test for this, so I changed the prototype
of the function to return the number of bytes released, allowing to
get the information needed. The test added fails with the initial
criteria.
Another issue is that `ReleaseToOsInterval` can actually be 0, meaning
we always try to release (side note: it's terrible for performances).
so change a `> 0` check to `>= 0`.
Additionally, decrease the `CanRelease` threshold to `PageSize / 32`.
I still have to make that configurable but I will do it at another time.
Finally, rename some variables in `printStats`: I feel like "available"
was too ambiguous, so change it to "total".
Reviewers: morehouse, hctim, eugenis, vitalybuka, cferris
Reviewed By: morehouse
Subscribers: delcypher, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D68471
llvm-svn: 373930
Summary:
cferris's Bionic tests found an issue in Scudo's `malloc_iterate`.
We were inclusive of both boundaries, which resulted in a `Block` that
was located on said boundary to be possibly accounted for twice, or
just being accounted for while iterating on regions that are not ours
(usually the unmapped ones in between Primary regions).
The fix is to exclude the upper boundary in `iterateOverChunks`, and
add a regression test.
This additionally corrects a typo in a comment, and change the 64-bit
Primary iteration function to not assume that `BatchClassId` is 0.
Reviewers: cferris, morehouse, hctim, vitalybuka, eugenis
Reviewed By: hctim
Subscribers: delcypher, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D66231
llvm-svn: 369400
Summary:
Android requires additional stats in mallinfo. While we can provide
right away the number of bytes mapped (Primary+Secondary), there was
no way to get the number of free bytes (only makes sense for the
Primary since the Secondary unmaps everything on deallocation).
An approximation could be `StatMapped - StatAllocated`, but since we
are mapping in `1<<17` increments for the 64-bit Primary, it's fairly
inaccurate.
So we introduce `StatFree` (note it's `Free`, not `Freed`!), which
keeps track of the amount of Primary blocks currently unallocated.
Reviewers: cferris, eugenis, vitalybuka, hctim, morehouse
Reviewed By: morehouse
Subscribers: delcypher, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D66112
llvm-svn: 368866
Summary:
This introduces a bunch of small optimizations with the purpose of
making the fastpath tighter:
- tag more conditions as `LIKELY`/`UNLIKELY`: as a rule of thumb we
consider that every operation related to the secondary is unlikely
- attempt to reduce the number of potentially extraneous instructions
- reorganize the `Chunk` header to not straddle a word boundary and
use more appropriate types
Note that some `LIKELY`/`UNLIKELY` impact might be less obvious as
they are in slow paths (for example in `secondary.cc`), but at this
point I am throwing a pretty wide net, and it's consistant and doesn't
hurt.
This was mosly done for the benfit of Android, but other platforms
benefit from it too. An aarch64 Android benchmark gives:
- before:
```
BM_youtube/min_time:15.000/repeats:4/manual_time_mean 445244 us 659385 us 4
BM_youtube/min_time:15.000/repeats:4/manual_time_median 445007 us 658970 us 4
BM_youtube/min_time:15.000/repeats:4/manual_time_stddev 885 us 1332 us 4
```
- after:
```
BM_youtube/min_time:15.000/repeats:4/manual_time_mean 415697 us 621925 us 4
BM_youtube/min_time:15.000/repeats:4/manual_time_median 415913 us 622061 us 4
BM_youtube/min_time:15.000/repeats:4/manual_time_stddev 990 us 1163 us 4
```
Additional since `-Werror=conversion` is enabled on some platforms we
are built on, enable it upstream to catch things early: a few sign
conversions had slept through and needed additional casting.
Reviewers: hctim, morehouse, eugenis, vitalybuka
Reviewed By: vitalybuka
Subscribers: srhines, mgorny, javed.absar, kristof.beyls, delcypher, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D64664
llvm-svn: 366918
Summary:
A few corrections:
- rename `TransferBatch::MaxCached` to `getMaxCached` to conform with
the style guide;
- move `getBlockBegin` from `Chunk::` to `Allocator::`: I believe it
was a fallacy to have this be a `Chunk` method, as chunks'
relationship to backend blocks are up to the frontend allocator. It
makes more sense now, particularly with regard to the offset. Update
the associated chunk test as the method isn't available there
anymore;
- add a forgotten `\n` to a log string;
- for `releaseToOs`, instead of starting at `1`, start at `0` and
`continue` on `BatchClassId`: in the end it's identical but doesn't
assume a particular class id for batches;
- change a `CHECK` to a `reportOutOfMemory`: it's a clearer message
Reviewers: hctim, morehouse, eugenis, vitalybuka
Reviewed By: hctim
Subscribers: delcypher, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D64570
llvm-svn: 365816
Summary:
We ran into a problem on Fuchsia where yielding threads would never
be deboosted, ultimately resulting in several threads spinning on the
same TSD, and no possibility for another thread to be scheduled,
dead-locking the process.
While this was fixed in Zircon, this lead to discussions about if
spinning without a break condition was a good decision, and settled on
a new hybrid model that would spin for a while then block.
Currently we are using a number of iterations for spinning that is
mostly arbitrary (based on sanitizer_common values), but this can
be tuned in the future.
Since we are touching `common.h`, we also use this change as a vehicle
for an Android optimization (the page size is fixed in Bionic, so use
a fixed value too).
Reviewers: morehouse, hctim, eugenis, dvyukov, vitalybuka
Reviewed By: hctim
Subscribers: srhines, delcypher, jfb, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D64358
llvm-svn: 365790
Summary:
The more tests are added, the more we are limited by the size of the
address space on 32-bit. Implement `unmapTestOnly` all around (like it
is in sanitzer_common) to be able to free up some memory.
This is not intended to be a proper "destructor" for an allocator, but
allows us to not fail due to having no memory left.
Reviewers: morehouse, vitalybuka, eugenis, hctim
Reviewed By: morehouse
Subscribers: delcypher, jfb, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D63146
llvm-svn: 363095
Summary:
This CL introduces the 32 & 64-bit primary allocators, and associated
Local Cache. While the general idea is mostly similar to what exists
in sanitizer_common, it departs from the original code somewhat
significantly:
- the 64-bit primary no longer uses a free array at the end of a region
but uses batches of free blocks in region 0, allowing for a
convergence with the 32-bit primary behavior;
- as a result, there is only one (templated) local cache type for both
primary allocators, and memory reclaiming can be implemented similarly
for the 32-bit & 64-bit platforms;
- 64-bit primary regions are handled a bit differently: we do not
reserve 4TB of memory that we split, but reserve `NumClasses *
2^RegionSizeLog`, each region being offseted by a random number of
pages from its computed base. A side effect of this is that the 64-bit
primary works on 32-bit platform (I don't think we want to encourage
it but it's an interesting side effect);
Reviewers: vitalybuka, eugenis, morehouse, hctim
Reviewed By: morehouse
Subscribers: srhines, mgorny, delcypher, jfb, #sanitizers, llvm-commits
Tags: #llvm, #sanitizers
Differential Revision: https://reviews.llvm.org/D61745
llvm-svn: 361159