If we're going to assume references are dereferenceable, we should also
assume they're aligned: otherwise, we can't actually dereference them.
See also D80072.
Differential Revision: https://reviews.llvm.org/D80166
I've also made a stab at imposing some more order on where and how we add
attributes; this part should be NFC. I wasn't sure whether the CUDA use
case for libdevice should propagate CPU/features attributes, so there's a
bit of unnecessary duplication.
Summary:
Previously, we treated CXXUuidofExpr as quite a special case: it was the
only kind of expression that could be a canonical template argument, it
could be a constant lvalue base object, and so on. In addition, we
represented the UUID value as a string, whose source form we did not
preserve faithfully, and that we partially parsed in multiple different
places.
With this patch, we create an MSGuidDecl object to represent the
implicit object of type 'struct _GUID' created by a UuidAttr. Each
UuidAttr holds a pointer to its 'struct _GUID' and its original
(as-written) UUID string. A non-value-dependent CXXUuidofExpr behaves
like a DeclRefExpr denoting that MSGuidDecl object. We cache an APValue
representation of the GUID on the MSGuidDecl and use it from constant
evaluation where needed.
This allows removing a lot of the special-case logic to handle these
expressions. Unfortunately, many parts of Clang assume there are only
a couple of interesting kinds of ValueDecl, so the total amount of
special-case logic is not really reduced very much.
This fixes a few bugs and issues:
* PR38490: we now support reading from GUID objects returned from
__uuidof during constant evaluation.
* Our Itanium mangling for a non-instantiation-dependent template
argument involving __uuidof no longer depends on which CXXUuidofExpr
template argument we happened to see first.
* We now predeclare ::_GUID, and permit use of __uuidof without
any header inclusion, better matching MSVC's behavior. We do not
predefine ::__s_GUID, though; that seems like a step too far.
* Our IR representation for GUID constants now uses the correct IR type
wherever possible. We will still fall back to using the
{i32, i16, i16, [8 x i8]}
layout if a definition of struct _GUID is not available. This is not
ideal: in principle the two layouts could have different padding.
Reviewers: rnk, jdoerfert
Subscribers: arphaman, cfe-commits, aeubanks
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78171
Summary:
- Use `device_builtin_surface` and `device_builtin_texture` for
surface/texture reference support. So far, both the host and device
use the same reference type, which could be revised later when
interface/implementation is stablized.
Reviewers: yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77583
This is the second part loosely extracted from D71179 and cleaned up.
This patch provides semantic analysis support for `omp begin/end declare
variant`, mostly as defined in OpenMP technical report 8 (TR8) [0].
The sema handling makes code generation obsolete as we generate "the
right" calls that can just be handled as usual. This handling also
applies to the existing, albeit problematic, `omp declare variant
support`. As a consequence a lot of unneeded code generation and
complexity is removed.
A major purpose of this patch is to provide proper `math.h`/`cmath`
support for OpenMP target offloading. See PR42061, PR42798, PR42799. The
current code was developed with this feature in mind, see [1].
The logic is as follows:
If we have seen a `#pragma omp begin declare variant match(<SELECTOR>)`
but not the corresponding `end declare variant`, and we find a function
definition we will:
1) Create a function declaration for the definition we were about to generate.
2) Create a function definition but with a mangled name (according to
`<SELECTOR>`).
3) Annotate the declaration with the `OMPDeclareVariantAttr`, the same
one used already for `omp declare variant`, using and the mangled
function definition as specialization for the context defined by
`<SELECTOR>`.
When a call is created we inspect it. If the target has an
`OMPDeclareVariantAttr` attribute we try to specialize the call. To this
end, all variants are checked, the best applicable one is picked and a
new call to the specialization is created. The new call is used instead
of the original one to the base function. To keep the AST printing and
tooling possible we utilize the PseudoObjectExpr. The original call is
the syntactic expression, the specialized call is the semantic
expression.
[0] https://www.openmp.org/wp-content/uploads/openmp-TR8.pdf
[1] https://reviews.llvm.org/D61399#change-496lQkg0mhRN
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim, aaron.ballman
Subscribers: bollu, guansong, openmp-commits, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75779
Passing small data limit to RISCVELFTargetObjectFile by module flag,
So the backend can set small data section threshold by the value.
The data will be put into the small data section if the data smaller than
the threshold.
Differential Revision: https://reviews.llvm.org/D57497
Summary:
- https://reviews.llvm.org/D68578 revises the `GlobalDecl` constructors
to ensure all GPU kernels have `ReferenceKenelKind` initialized
properly with an explicit constructor and static one. But, there are
lots of places using the implicit constructor triggering the assertion
on non-GPU kernels. That's found in compilation of many tests and
workloads.
- Fixing all of them may change more code and, more importantly, all of
them assumes the default kernel reference kind. This patch changes
that constructor to tell `CUDAGlobalAttr` and construct `GlobalDecl`
properly.
Reviewers: yaxunl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76344
HIP emits a device stub function for each kernel in host code.
The HIP debugger requires device stub function to have a different unmangled name as the kernel.
Currently the name of the device stub function is the mangled name with a postfix .stub. However,
this does not work with the HIP debugger since the unmangled name is the same as the kernel.
This patch adds prefix __device__stub__ to the unmangled name of the device stub before mangling,
therefore the device stub function has a valid mangled name which is different than the device kernel
name. The device side kernel name is kept unchanged. kernels with extern "C" also gets the prefix added
to the corresponding device stub function.
Differential Revision: https://reviews.llvm.org/D68578
Summary:
hip-pinned-shadow global var should remain in the final code object irrespective
of whether it is used or not within the code. Add it to used list, so that it
will not get eliminated when it is unused.
Reviewers: yaxunl, tra, hliao
Reviewed By: yaxunl
Subscribers: hliao, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75402
WebAssembly enforces a rule that caller and callee signatures must
match. This means that the traditional technique of passing `main`
`argc` and `argv` even when it doesn't need them doesn't work.
Currently the backend renames `main` to `__original_main`, however this
doesn't interact well with LTO'ing libc, and the name isn't intuitive.
This patch allows us to transition to `__main_argc_argv` instead.
This implements the proposal in
https://github.com/WebAssembly/tool-conventions/pull/134
with a flag to disable it when targeting Emscripten, though this is
expected to be temporary, as discussed in the proposal comments.
Differential Revision: https://reviews.llvm.org/D70700
When T is a class type, only nvsize(T) bytes need be accessible through
the reference. We had matching bugs in the application of the
dereferenceable attribute and in -fsanitize=undefined.
This restores 59733525d3 (D71913), along
with bot fix 19c76989bb.
The bot failure should be fixed by D73418, committed as
af954e441a.
I also added a fix for non-x86 bot failures by requiring x86 in new test
lld/test/ELF/lto/devirt_vcall_vis_public.ll.
Summary:
Third part in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
This patch adds type test metadata under -fwhole-program-vtables,
even for classes without hidden visibility. It then changes WPD to skip
devirtualization for a virtual function call when any of the compatible
vtables has public vcall visibility.
Additionally, internal LLVM options as well as lld and gold-plugin
options are added which enable upgrading all public vcall visibility
to linkage unit (hidden) visibility during LTO. This enables the more
aggressive WPD to kick in based on LTO time knowledge of the visibility
guarantees.
Support was added to all flavors of LTO WPD (regular, hybrid and
index-only), and to both the new and old LTO APIs.
Unfortunately it was not simple to split the first and second parts of
this part of the change (the unconditional emission of type tests and
the upgrading of the vcall visiblity) as I needed a way to upgrade the
public visibility on legacy WPD llvm assembly tests that don't include
linkage unit vcall visibility specifiers, to avoid a lot of test churn.
I also added a mechanism to LowerTypeTests that allows dropping type
test assume sequences we now aggressively insert when we invoke
distributed ThinLTO backends with null indexes, which is used in testing
mode, and which doesn't invoke the normal ThinLTO backend pipeline.
Depends on D71907 and D71911.
Reviewers: pcc, evgeny777, steven_wu, espindola
Subscribers: emaste, Prazek, inglorion, arichardson, hiraditya, MaskRay, dexonsmith, dang, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71913
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch moves some of the code from CodeGen to create an
appropriate feature map that we can pass to the function.
Differential Revision: https://reviews.llvm.org/D68627
Commit d77ae1552f
("[DebugInfo] Support to emit debugInfo for extern variables")
added deebugInfo for extern variables for BPF target.
The commit is reverted by 891e25b02d
as the committed tests using %clang instead of %clang_cc1 causing
test failed in certain scenarios as reported by Reid Kleckner.
This patch fixed the tests by using %clang_cc1.
Differential Revision: https://reviews.llvm.org/D71818
This is a follow up patch to use the OpenMP-IR-Builder, as discussed on
the mailing list ([1] and later) and at the US Dev Meeting'19.
[1] http://lists.flang-compiler.org/pipermail/flang-dev_lists.flang-compiler.org/2019-May/000197.html
Reviewers: kiranchandramohan, ABataev, RaviNarayanaswamy, gtbercea, grokos, sdmitriev, JonChesterfield, hfinkel, fghanim
Subscribers: ppenzin, penzn, llvm-commits, cfe-commits, jfb, guansong, bollu, hiraditya, mgorny
Tags: #clang
Differential Revision: https://reviews.llvm.org/D69922
Extern variable usage in BPF is different from traditional
pure user space application. Recent discussion in linux bpf
mailing list has two use cases where debug info types are
required to use extern variables:
- extern types are required to have a suitable interface
in libbpf (bpf loader) to provide kernel config parameters
to bpf programs.
https://lore.kernel.org/bpf/CAEf4BzYCNo5GeVGMhp3fhysQ=_axAf=23PtwaZs-yAyafmXC9g@mail.gmail.com/T/#t
- extern types are required so kernel bpf verifier can
verify program which uses external functions more precisely.
This will make later link with actual external function no
need to reverify.
https://lore.kernel.org/bpf/87eez4odqp.fsf@toke.dk/T/#m8d5c3e87ffe7f2764e02d722cb0d8cbc136880ed
This patch added clang support to emit debuginfo for extern variables
with a TargetInfo hook to enable it. The debuginfo for the
extern variable is emitted only if that extern variable is
referenced in the current compilation unit.
Currently, only BPF target enables to generate debug info for
extern variables. The emission of such debuginfo is disabled for C++
at this moment since BPF only supports a subset of C language.
Emission with C++ can be enabled later if an appropriate use case
is identified.
-fstandalone-debug permits us to see more debuginfo with the cost
of bloated binary size. This patch did not add emission of extern
variable debug info with -fstandalone-debug. This can be
re-evaluated if there is a real need.
Differential Revision: https://reviews.llvm.org/D70696
The validateOutputSize and validateInputSize need to check whether
AVX or AVX512 are enabled. But this can be affected by the
target attribute so we need to factor that in.
This patch copies some of the code from CodeGen to create an
appropriate feature map that we can pass to the function. Probably
need some refactoring here to share more code with Codegen. Is
there a good place to do that? Also need to support the cpu_specific
attribute as well.
Differential Revision: https://reviews.llvm.org/D68627
Most of the functions emitted here should probably be convergent, but
only barriers are currently marked. Introduce this helper before
adding convergent to more functions.
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.
Original commit message:
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 375094
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
This reinstates r363295, reverted in r363352, with a fix for PR42276:
we now produce a proper name for a non-odr-use reference to a static
constexpr data member. The name <mangled-name>.const is used in that
case; such names are reserved to the implementation for cases such as
this and should demangle nicely.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363428
Revert 363340 "Remove unused SK_LValueToRValue initialization step."
Revert 363337 "PR23833, DR2140: an lvalue-to-rvalue conversion on a glvalue of type"
Revert 363295 "C++ DR712 and others: handle non-odr-use resulting from an lvalue-to-rvalue conversion applied to a member access or similar not-quite-trivial lvalue expression."
llvm-svn: 363352
Summary:
When a variable is named in a context where we can't directly emit a
reference to it (because we don't know for sure that it's going to be
defined, or it's from an enclosing function and not captured, or the
reference might not "work" for some reason), we emit a copy of the
variable as a global and use that for the known-to-be-read-only access.
Reviewers: rjmccall
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63157
llvm-svn: 363295
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
We need to be able to enqueue internal function that initializes
global constructors on the host side. Therefore it has to be
converted to a kernel.
This change factors out common logic for adding kernel metadata
and moves it from CodeGenFunction to CodeGenModule in order to
make it accessible for the extra use case.
Differential revision: https://reviews.llvm.org/D61488
llvm-svn: 360342
This provides a code size win on the caller side, since the init
message send is done in the runtime function.
rdar://44987038
Differential revision: https://reviews.llvm.org/D57936
llvm-svn: 354056
Emit{Nounwind,}RuntimeCall{,OrInvoke} have been modified to take a
FunctionCallee as an argument, and CreateRuntimeFunction has been
modified to return a FunctionCallee. All callers have been updated.
Additionally, CreateBuiltinFunction is removed, as it was redundant
with CreateRuntimeFunction after some previous changes.
Differential Revision: https://reviews.llvm.org/D57668
llvm-svn: 353184
This patch implements parsing and sema for "omp declare mapper"
directive. User defined mapper, i.e., declare mapper directive, is a new
feature in OpenMP 5.0. It is introduced to extend existing map clauses
for the purpose of simplifying the copy of complex data structures
between host and device (i.e., deep copy). An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(struct S s) map(s, s.d[0:s.len]) // Memory region that d points to is also mapped using this mapper.
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D56326
llvm-svn: 352906
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
It is faster to directly call the ObjC runtime for methods such as retain/release instead of sending a message to those functions.
Differential Revision: https://reviews.llvm.org/D55869
Reviewed By: rjmccall
llvm-svn: 349952
Implement options in clang to enable recording the driver command-line
in an ELF section.
Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.
This differs from the GCC implementation in some key ways:
* In GCC there is only one command-line possible per compilation-unit,
in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
command-lines are separated by NULL bytes. The advantage of the GCC
approach is to clearly delineate options in the face of embedded
spaces. The advantage of the LLVM approach is to support merging
multiple command-lines unambiguously, while handling embedded spaces
with escaping.
Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489
llvm-svn: 349155