unknown type and there is a possibility that
at runtime method is resolved to a deprecated or
unavailable method. Addreses // rdar://8769853
llvm-svn: 122294
shouldWalkTypesOfTypeLocs() that determines whether it should walk the
Types within TypeLocs. This walk is redundant, but perhaps required
for some clients. Disabling this redundant walk in the unexpanded
parameter pack finder produces better results, because we get
parameter packs with source location info *unless* such source
location information isn't available.
llvm-svn: 122287
whose patterns are template arguments. We can now instantiate, e.g.,
typedef tuple<pair<OuterTypes, InnerTypes>...> type;
where OuterTypes and InnerTypes are template type parameter packs.
There is a horrible inefficiency in
TemplateArgumentLoc::getPackExpansionPattern(), where we need to
create copies of TypeLoc data because our interfaces traffic in
TypeSourceInfo pointers where they should traffic in TypeLocs
instead. I've isolated in efficiency in this one routine; once we
refactor our interfaces to traffic in TypeLocs, we can eliminate it.
llvm-svn: 122278
area of printing template arguments. The functionality changes here
are limited to cases of variadic templates that aren't yet enabled.
llvm-svn: 122250
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
to libAnalysis. Similar to Format (format string checking),
CocoaConventions has the
potential to serve clients other than the
static analyzer.
llvm-svn: 122040
implicit lvalue-to-rvalue casts that John McCall
recently introduced. This causes a whole bunch
of logic in the analyzer for handling lvalues
to vanish. It does, however, raise a few issues
in the analyzer w.r.t to modeling various constructs
(e.g., field accesses to compound literals).
The .c/.m analysis test cases that fail are
due to a missing lvalue-to-rvalue cast that
will get introduced into the AST. The .cpp
failures were more than I could investigate in
one go, and the patch was already getting huge.
I have XFAILED some of these tests, and they
should obviously be further investigated.
Some highlights of this patch include:
- CFG no longer requires an lvalue bit for
CFGElements
- StackFrameContext doesn't need an 'asLValue'
flag
- The "VisitLValue" path from GRExprEngine has
been eliminated.
Besides the test case failures (XFAILed), there
are surely other bugs that are fallout from
this change.
llvm-svn: 121960
Also tweak the VCVT_F32_F16 entry in arm_neon.td to be more consistent with
the other floating-point conversion builtins. Radar 8068427.
llvm-svn: 121916
declarations. This is a work in progress, as I go through the C++
declaration grammar to identify where unexpanded parameter packs can
occur.
llvm-svn: 121912
parameter packs within a statement, type, etc. Use this visitor to
provide improved diagnostics for the presence of unexpanded parameter
packs in a full expression, base type, declaration type, etc., by
highlighting the unexpanded parameter packs and providing their names,
e.g.,
test/CXX/temp/temp.decls/temp.variadic/p5.cpp:28:85: error: declaration type
contains unexpanded parameter packs 'VeryInnerTypes',
'OuterTypes', ...
...VeryInnerTypes, OuterTypes>, pair<InnerTypes, OuterTypes> > types;
~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ^
llvm-svn: 121883
Diagnostic pragmas are broken because we don't keep track of the diagnostic state changes and we only check the current/latest state.
Problems manifest if a diagnostic is emitted for a source line that has different diagnostic state than the current state; this can affect
a lot of places, like C++ inline methods, template instantiations, the lexer, etc.
Fix the issue by having the Diagnostic object keep track of the source location of the pragmas so that it is able to know what is the diagnostic state at any given source location.
Fixes rdar://8365684.
llvm-svn: 121873
within the class. Teach IR gen to look for function definitions in record
lexical contexts when deciding whether to emit a function whose address
was taken. Fixes PR8789.
llvm-svn: 121833
whether the expression contains an unexpanded parameter pack, in the
same vein as the changes to the Type hierarchy. Compute this bit
within all of the Expr subclasses.
This change required a bunch of reshuffling of dependency
calculations, mainly to consolidate them inside the constructors and
to fuse multiple loops that iterate over arguments to determine type
dependence, value dependence, and (now) containment of unexpanded
parameter packs.
Again, testing is painfully sparse, because all of the diagnostics
will change and it is more important to test the to-be-written visitor
that collects unexpanded parameter packs.
llvm-svn: 121831
class to be passed around. The line between argument and return types and
everything else is kindof vague, but I think it's justifiable.
llvm-svn: 121752
and TemplateArgument with an operation that determines whether there
are any unexpanded parameter packs within that construct. Use this
information to diagnose the appearance of the names of parameter packs
that have not been expanded (C++ [temp.variadic]p5). Since this
property is checked often (every declaration, ever expression
statement, etc.), we extend Type and Expr with a bit storing the
result of this computation, rather than walking the AST each time to
determine whether any unexpanded parameter packs occur.
This commit is deficient in several ways, which will be remedied with
future commits:
- Expr has a bit to store the presence of an unexpanded parameter
pack, but it is never set.
- The error messages don't point out where the unexpanded parameter
packs were named in the type/expression, but they should.
- We don't check for unexpanded parameter packs in all of the places
where we should.
- Testing is sparse, pending the resolution of the above three
issues.
llvm-svn: 121724
would return true if the initializer pointer union had *any* non-null
pointer in it, even if the pointer wasn't one that would actually be
returned via getInit(). This makes it more accurately model the logic of
'getInit() != NULL'.
This still isn't completely satisfying. From a principled stance,
I suspect we should make hasInit() and getInit() *always* return false
and NULL (resp.) for ParmVarDecl. We shouldn't at the API level treat
initializers and default arguments as the same thing.
llvm-svn: 121692
QualType::getTypePtr(). It turns out that
cast_or_null/dyn_cast_or_null don't actually use simplify_type, so
they're guaranteed to operator on non-NULL QualType or CanQualType
objects.
Good for a 0.6% win on 403.gcc's combine.c with -emit-llvm.
llvm-svn: 121495
common base for ExtQuals and Type that stores the underlying type
pointer. This results in a 2% performance win for -emit-llvm on a
typical C file, with 1% memory growth in the AST.
Note that there is an API change in this optimization:
QualType::getTypePtr() can no longer be invoked on a NULL
QualType. If the QualType might be NULL, use
QualType::getTypePtrOrNull(). I've audited all uses of getTypePtr() in
the code base and changed the appropriate uses over to
getTypePtrOrNull().
A future optimization opportunity would be to distinguish between
cast/dyn_cast and cast_or_null/dyn_cast_or_null; for the former, we
could use getTypePtr() rather than getTypePtrOrNull(), to take another
branch out of the cast/dyn_cast implementation.
llvm-svn: 121489
space better. Remove this reference. To make that work, change some APIs
(most importantly, getDesugaredType()) to take an ASTContext& if they
need to return a QualType. Simultaneously, diminish the need to return a
QualType by introducing some useful APIs on SplitQualType, which is
just a std::pair<const Type *, Qualifiers>.
llvm-svn: 121478
increasing the required type alignment from 8 to 16. This provides a
2.5% speedup for -fsyntax-only on a token-cached Cocoa.h, while only
increasing memory consumption in the ASTContext by 0.8%.
llvm-svn: 121474
visibility. Fixes PR8713.
I've disabled a test which was testing that you can #pragma pop visibility
to get out of a namespace's visibility attribute. We should probably just
diagnose that as an error unless it's instrumental to someone's system
headers.
llvm-svn: 121459
The sensible thing would be to have these intrinsics take all quad-register
vector operands, but that's not what ARM did. They made the last vector
operand always be a double-register type. Since the lane number
must be a constant, the user can know which half of a quad-register contains
that lane, extract the high or low half of the vector, and adjust the lane
number accordingly. The only advantage I can see for this is that it works
better when you want to multiply a quad-register value by a lane from a
double-register value, but I wouldn't have expected that to be the common
case. Oh well -- at this point we just need to follow the spec.
llvm-svn: 121397
"inline", we weren't giving the definition weak linkage because the
"inline" bit wasn't propagated. This was a longstanding FIXME that,
somehow, hadn't triggered a bug in the wild. Fix this problem by
tracking whether any declaration was marked "inline", and clean up the
semantics of GNU's "extern inline" semantics calculation based on this
change.
Fixes <rdar://problem/8740363>.
llvm-svn: 121373
declaration that is a value in ill-formed code. Instead of crashing,
treat this as a dependent typename specifier and suggest that the
using add "typename" into the using declaration. Fixes <rdar://problem/8740998>.
llvm-svn: 121322
FunctionArrayLvalueConversion but without the function/array decay. Generally
this is only appropriate for use sites that know the type of the expression
and thus that it can't be subject to the decays.
Also make sure we do lvalue-to-rvalue on the bases of ivar references.
llvm-svn: 121035
My previous attempt at solving the compile-time problem with many
redeclarations of the same entity cached both linkage and visibility,
while this patch only tackles linkage. There are several reasons for
this difference:
- Linkage is a language concept, and is evaluated many times during
semantic analysis and codegen, while visibility is only a
code-generation concept that is evaluated only once per (unique)
declaration. Hence, we *must* optimize linkage calculations but
don't need to optimize visibility computation.
- Once we know the linkage of a declaration, subsequent
redeclarations can't change that linkage. Hence, cache
invalidation is far simpler than for visibility, where a later
redeclaration can completely change the visibility.
- We have 3 spare bits in Decl to store the linkage cache, so the
cache doesn't increase the size of declarations. With the
visibility+linkage cache, NamedDecl got larger.
llvm-svn: 121023
and visibility of declarations, because it was extremely messy and it
increased the size of NamedDecl.
An improved implementation is forthcoming.
llvm-svn: 121012
so that's not a valid thing to do at all. Instead, switch to a ValueDecl
argument, the template isn't really necessary here.
When handling the types explicitly in the code, it becomes awkward to cerate
the CXXBaseOrMemberInitializer object in so many places. Re-flow the code to
calculate the Init expression first, and then create the initializer. If this
is too gross, we can factor the init expression logic into helper functions,
but it's not past my threshold yet.
llvm-svn: 120997
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
not actually frequently used, because ImpCastExprToType only creates a node
if the types differ. So explicitly create an ICE in the lvalue-to-rvalue
conversion code in DefaultFunctionArrayLvalueConversion() as well as several
other new places, and consistently deal with the consequences throughout the
compiler.
In addition, introduce a new cast kind for loading an ObjCProperty l-value,
and make sure we emit those nodes whenever an ObjCProperty l-value appears
that's not on the LHS of an assignment operator.
This breaks a couple of rewriter tests, which I've x-failed until future
development occurs on the rewriter.
Ted Kremenek kindly contributed the analyzer workarounds in this patch.
llvm-svn: 120890
This patch refactors the CompilerInvocation code to introduce a
CompilerInvocation::setLangDefaults function, which can set up a
LangOptions with the defaults for a given language and language
standard. This function is useful for non-command line based Clang
clients which need to set up a CompilerInvocation manually for a
specific language.
llvm-svn: 120874
For some reason these were not included in the list of Neon intrinsics in
ARM's documentation, so they didn't make it into Clang either.
llvm-svn: 120815
declarations.
The motivation for this patch is that linkage/visibility computations
are linear in the number of redeclarations of an entity, and we've run
into a case where a single translation unit has > 6500 redeclarations
of the same (unused!) external variable. Since each redeclaration
involves a linkage check, the resulting quadratic behavior makes Clang
slow to a crawl. With this change, a simple test with 512
redeclarations of a variable syntax-checks ~20x faster than
before.
That said, I hate this change, and will probably end up reverting it
in a few hours. Reasons to hate it:
- It makes NamedDecl larger, since we don't have enough free bits in
Decl to squeeze in the extra information about caching.
- There are way too many places where we need to invalidate this
cache, because the visibility of a declaration can change due to
redeclarations (!). Despite self-hosting and passing the testsuite,
I have no confidence that I've found all of places where this cache
needs to be invalidated.
llvm-svn: 120808
This is currently the same as a lowercase version of the record name, but
it will allow us to have multiple records with the same name, which is
needed for intrinsics (e.g., vmul and vmull) that are implemented
differently depending on the type.
llvm-svn: 120807
a node in the trimmed graph might not always
correctly map back to the original error node.
This could cause a crash in some cases when
flagging memory leaks.
llvm-svn: 120795
TemplateArgumentLocInfo. Unfortunately, this means that we lose some
internal consistency checking when building a debug Clang. However,
having data structures change size/layout depending on NDEBUG causes
pain for clients of the Clang API.
llvm-svn: 120706
definition of an Objective-C class. Unlike with C/C++ classes, we
don't have a well-defined point in Sema where Objective-C classes are
checked for completeness, nor do we need to involve Sema when
completing a class. Therefore, we take the appropriate of having the
external AST source mark a particular Objective-C class as having an
external declaration; when using one of the accessors of an
Objective-C class that has an external declaration, we request that
the external AST source fill in the Objective-C class definition.
llvm-svn: 120627
instantiations, GCC also supports "inline" and "static" explicit
template instantiations. Parse and warn about such constructs, but
don't implement the semantics of either "inline" or "static". They
don't seem to be widely used.
llvm-svn: 120599
disambiguate between an expression (for a bit-field width) and a type
(for a fixed underlying type). Since the disambiguation can be
expensive (due to tentative parsing), we perform a simplistic
disambiguation based on one-token lookahead before going into the
full-blown tentative parsing. Based on a patch by Daniel Wallin.
llvm-svn: 120582