LLVM test CodeGen/AArch64/speculation-hardening.ll tries to check for
the absence of a sequence of instructions with several CHECK-NOT with
one of those directives using a variable defined in another. However
CHECK-NOT are checked independently so that is using a variable defined
in a pattern that should not occur in the input.
This commit removes the dependency between those CHECK-NOT by replacing
single occurence of the undefined variable by a regex match, and
multiple occurences by a definition followed by a use.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D99866
LLVM test CodeGen/AArch64/aarch64-tbz.ll tries to check for the absence
of a sequence of instructions with several CHECK-NOT with one of those
directives using a variable defined in another. However CHECK-NOT are
checked independently so that is using a variable defined in a pattern
that should not occur in the input.
This commit removes the definition and uses of variable to check each
line independently, making the check stronger than the current one. It
also removes unnecessary regex match for labels.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D99602
It is generally beneficial to prefer "movi d0, #0" over "fmov s0, wzr" as this
is most efficient across all cores; it is recognised as a zeroing idiom. For
newer cores, fmov instructions can also be eliminated early and there is no
difference with movi, but some implementations lack this so is not true for
other/older cores. Thus this standardises on using movi as this should always
gives the same or better performance than the fmov with wzr.
Differential Revision: https://reviews.llvm.org/D99586
This was using the .2d variant which zeros 128 bits, but using the .2s variant
that zeros 64 bits is faster on some cores.
This is a prep step for D99586 to always using movi for zeroing floats.
Differential Revision: https://reviews.llvm.org/D99710
This is a followup to D98145: As far as I know, tracking of kill
flags in FastISel is just a compile-time optimization. However,
I'm not actually seeing any compile-time regression when removing
the tracking. This probably used to be more important in the past,
before FastRA was switched to allocate instructions in reverse
order, which means that it discovers kills as a matter of course.
As such, the kill tracking doesn't really seem to serve a purpose
anymore, and just adds additional complexity and potential for
errors. This patch removes it entirely. The primary changes are
dropping the hasTrivialKill() method and removing the kill
arguments from the emitFast methods. The rest is mechanical fixup.
Differential Revision: https://reviews.llvm.org/D98294
Change the definition of G_SBFX and G_UBFX so that the lsb and width
can have different types than the src and dst operands.
Differential Revision: https://reviews.llvm.org/D99739
The main part of the patch is the change in RegAllocGreedy.cpp: Q.collectInterferringVregs()
needs to be called before iterating the interfering live ranges.
The rest of the patch offers support that is the case: instead of clearing the query's
InterferingVRegs field, we invalidate it. The clearing happens when the live reg matrix
is invalidated (existing triggering mechanism).
Without the change in RegAllocGreedy.cpp, the compiler ices.
This patch should make it more easily discoverable by developers that
collectInterferringVregs needs to be called before iterating.
I will follow up with a subsequent patch to improve the usability and maintainability of Query.
Differential Revision: https://reviews.llvm.org/D98232
When an SVE function calls another SVE function using the C calling
convention we use the more efficient SVE VectorCall PCS. However,
for the Fast calling convention we're incorrectly falling back to
the generic AArch64 PCS.
This patch adds the same "can use SVE vector calling convention"
detection used by CallingConv::C to CallingConv::Fast.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D99657
This allows these optimisations to apply to e.g. `urem i16` directly
before `urem` is promoted to i32 on architectures where i16 operations
are not intrinsically legal (such as on Aarch64). The legalization then
later can happen more directly and generated code gets a chance to avoid
wasting time on computing results in types wider than necessary, in the end.
Seems like mostly an improvement in terms of results at least as far as x86_64 and aarch64 are concerned, with a few regressions here and there. It also helps in preventing regressions in changes like {D87976}.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D88785
Currently the code only checks for integer constants (ConstantSDNode)
and triggers an infinite cycle for single-element floating point
vector constants. We need to check for both FP and integer constants.
Reviewed By: t.p.northover
Differential Revision: https://reviews.llvm.org/D99384
This patch adds 3 methods, one for power-of-2 vectors which use tree
reductions using vector ops, before a final reduction op. For non-pow-2
types it generates multiple narrow reductions and combines the values with
scalar ops.
Differential Revision: https://reviews.llvm.org/D97163
For imported pattern purposes, we have a custom rule that promotes the rotate
amount to 64b as well.
Differential Revision: https://reviews.llvm.org/D99463
Basically a port of isBitfieldExtractOpFromSExtInReg in AArch64ISelDAGToDAG.
This is only done post-legalization for now. Once the legalizer knows how to
decompose these back into shifts, this requirement can probably be removed.
Differential Revision: https://reviews.llvm.org/D99230
regbank-ceil.ll -> regbank-ceil.mir
The IR test was intended to only check register banks. This makes it brittle,
especially as we improve load/store combines in GlobalISel.
Rewriting this as a MIR test also makes it more consistent with the rest of
the testcases in GlobalISel.
Currently performExtendCombine assumes that the src-element bitwidth * 2
is a valid MVT. But this is not the case for i1 and it causes a crash on
the v64i1 test cases added in this patch.
It turns out that this code appears to not be needed; the same patterns are
handled by other code and we end up with the same results, even without the
custom lowering. I also added additional test cases in a50037aaa6.
Let's just remove the unneeded code.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D99437
This is currently performed in SelectionDAGLegalize, here we make it also
happen in LegalizeVectorOps, allowing a target to lower the SETCC condition
codes first in LegalizeVectorOps and then lower to a custom node afterwards,
without having to duplicate all of the SETCC condition legalization in the
target specific lowering.
As a result of this, fixed length floating point SETCC nodes can now be
properly lowered for SVE.
Differential Revision: https://reviews.llvm.org/D98939
Darwin platforms for both AArch64 and X86 can provide optimized `bzero()`
routines. In this case, it may be preferable to use `bzero` in place of a
memset of 0.
This adds a G_BZERO generic opcode, similar to G_MEMSET et al. This opcode can
be generated by platforms which may want to use bzero.
To emit the G_BZERO, this adds a pre-legalize combine for AArch64. The
conditions for this are largely a port of the bzero case in
`AArch64SelectionDAGInfo::EmitTargetCodeForMemset`.
The only difference in comparison to the SelectionDAG code is that, when
compiling for minsize, this will fire for all memsets of 0. The original code
notes that it's not beneficial to do this for small memsets; however, using
bzero here will save a mov from wzr. For minsize, I think that it's preferable
to prioritise omitting the mov.
This also fixes a bug in the libcall legalization code which would delete
instructions which could not be legalized. It also adds a check to make sure
that we actually get a libcall name.
Code size improvements (Darwin):
- CTMark -Os: -0.0% geomean (-0.1% on pairlocalalign)
- CTMark -Oz: -0.2% geomean (-0.5% on bullet)
Differential Revision: https://reviews.llvm.org/D99358
This may occur when swifterror codegen in the translator generates these,
but we shouldn't try to handle them since they should have regclasses anyway.
rdar://75784009
Differential Revision: https://reviews.llvm.org/D99287
Add selection support for G_SBFX and G_UBFX and add a test.
These must always have a constant LSB and width.
Differential Revision: https://reviews.llvm.org/D99224
The VSelectCombine handler within AArch64ISelLowering,
uses an interface call which only expects fixed vectors.
This generates a warning when the call is made on a
scalable vector. This warning has been suppressed with this change,
by using the ElementCount interface, which supports both fixed and scalable vectors.
I have also added a regression test which recreates the warning.
Differential Revision: https://reviews.llvm.org/D98249
This adds some missing legalizer tests, which uncovered a v2s64 selection
test that wasn't working since there's no legalization or instruction for that.
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.
For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as
mul step_vector(1), 2 -> step_vector(2)
add step_vector(1), step_vector(1) -> step_vector(2)
shl step_vector(1), 1 -> step_vector(2)
etc.
that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.
I've added cost model tests for both fixed width and scalable
vectors:
llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll
as well as codegen lowering tests for fixed width and scalable
vectors:
llvm/test/CodeGen/AArch64/neon-stepvector.ll
llvm/test/CodeGen/AArch64/sve-stepvector.ll
See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
Previously only the i32 type was tested. Now, the {i,f}{16,32,64} types
are tested.
The v8{i,f}16 cases lower differently to the other cases, which is worth
defending. The lowering for the other cases is currently identical, but
probably worth having for the better coverage.
Differential Revision: https://reviews.llvm.org/D98690
This adds some conversion match patterns for which we want to keep the int
values in FP registers using the corresponding NEON instructions (not the FP
instructions) to avoid more costly int <-> fp register transfers.
Differential Revision: https://reviews.llvm.org/D98956
This reverts commit 962b73dd0f.
This commit was reverted because of some internal SPEC test failures.
It turns out that this wasn't actually relevant to anything in open source, so
it's safe to recommit this.
byval requires an implicit copy between the caller and callee such
that the callee may write into the stack area without it modifying the
value in the parent. Previously, this was passing through the raw
pointer value which would break if the callee wrote into it.
Most of the time, this copy can be optimized out (however we don't
have the optimization SelectionDAG does yet).
This will trigger more fallbacks for AMDGPU now, since we don't have
legalization for memcpy yet (although we should stop using byval
anyway).
LLVM test CodeGen/AArch64/machine-outliner-retaddr-sign-thunk.ll uses
a string substitution block that contains a regex matching block. This
seems like as a copy/paste from other similar test where the match also
defines a variable, hence the [[]] syntax. In this case however this is
a CHECK-NOT variable so nothing should match. No variable definition is
thus expected and the square brackets can be dropped.
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D98853
Don't rewrite an add instruction with 2 SET_CC operands into a csel
instruction. The total instruction sequence uses an extra instruction and
register. Preventing this allows us to match a `(add, csel)` pattern and
rewrite this into a `cinc`.
Differential Revision: https://reviews.llvm.org/D98704
These are pseudos without any users, so DCE was killing them in the combiner.
Marking them as having side effects doesn't seem quite right since they don't.
Gives a nice 0.3% geomean size win on CTMark -Os.
Differential Revision: https://reviews.llvm.org/D98811
The previous technique relied on early-exiting the legalizer predicate
initialization, leaving an empty rule table. That causes a fallback
for most instructions, but some have legacy rules defined like G_ZEXT
which can try continue, but then crash.
We should fall back earlier, in the translator, to avoid this issue.
Differential Revision: https://reviews.llvm.org/D98730
Previously NEON used a target specific intrinsic for frintn, given that
the FROUNDEVEN ISD node now exists, move over to that instead and add
codegen support for that node for both NEON and fixed length SVE.
Differential Revision: https://reviews.llvm.org/D98487
This commit folds sxtw'd or uxtw'd offsets into gather loads where
possible with a DAGCombine optimization.
As an example, the following code:
1 #include <arm_sve.h>
2
3 svuint64_t func(svbool_t pred, const int32_t *base, svint64_t offsets) {
4 return svld1sw_gather_s64offset_u64(
5 pred, base, svextw_s64_x(pred, offsets)
6 );
7 }
would previously lower to the following assembly:
sxtw z0.d, p0/m, z0.d
ld1sw { z0.d }, p0/z, [x0, z0.d]
ret
but now lowers to:
ld1sw { z0.d }, p0/z, [x0, z0.d, sxtw]
ret
Differential Revision: https://reviews.llvm.org/D97858
This commit implements an IR-level optimization to eliminate idempotent
SVE mul/fmul intrinsic calls. Currently, the following patterns are
captured:
fmul pg (dup_x 1.0) V => V
mul pg (dup_x 1) V => V
fmul pg V (dup_x 1.0) => V
mul pg V (dup_x 1) => V
fmul pg V (dup v pg 1.0) => V
mul pg V (dup v pg 1) => V
The result of this commit is that code such as:
1 #include <arm_sve.h>
2
3 svfloat64_t foo(svfloat64_t a) {
4 svbool_t t = svptrue_b64();
5 svfloat64_t b = svdup_f64(1.0);
6 return svmul_m(t, a, b);
7 }
will lower to a nop.
This commit does not capture all possibilities; only the simple cases
described above. There is still room for further optimisation.
Differential Revision: https://reviews.llvm.org/D98033