std::vector can have different sizes depending on the STL's debug level,
so account for its size separately. (You could argue that we should be
accounting for all the other members separately as well, but that would
be very unergonomic, and std::vector is the only one that's caused
problems so far.)
Follup-up to D107533, where we replaced local syms with non-local.
It doesn't make sense to replace local symbol with lazy.
Differential Revision: https://reviews.llvm.org/D110040
Fix a null pointer dereference when .got.plt is discarded.
This also adds a test for discarding `.plt`.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D114180
Follow-up to https://reviews.llvm.org/D112643. Even after that change, we were
still asserting if two separate functions that are eligible for ICF (same size,
same data, same number of relocs, same reloc types, ...) referred to
Undefineds. This fixes that oversight.
Differential Revision: https://reviews.llvm.org/D114195
When aligning the start address of an output section introduces a gap between the current dot pointer
and the new aligned address, we were already properly expanding the memory region, if available.
D74286 introduced a new behavior to also align the LMA address if an LMA region is specified.
However, this did not expand the corresponding LMA region.
Now, we also expand the LMA region if it is set.
This fixes PR52510.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114166
ld64 doesn't warn on builds using `-install_name` if it's a bundle. But, the
current warning is nice to have because `install_name` only works with dylib.
To prevent an overflow of warnings in build logs and have parity with ld64,
create a `--warn-dylib-install-name` and `--warn-no-dylib-install-name` flag
that enables this LLD specific warning.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D113534
In order to keep signal:noise high for the `__eh_frame` diff, I have teased-out the NFC changes and put them here.
Differential Revision: https://reviews.llvm.org/D114017
As discussed in https://reviews.llvm.org/D113809#3128636. It's a bit
unfortunate to move the asserts away from the structs whose sizes
they're checking, but it's a far better developer experience when one of
the asserts is violated, because you get a single error instead of every
single source file including the header erroring out.
The `r_address` field of `relocation_info` is only 4 bytes, so our
offset field (which is the `r_address` field adjusted for subsection
splitting) also only needs to be 4 bytes. This reduces the structure
size from 32 bytes to 24 bytes.
Combined with https://reviews.llvm.org/D113813, this is a minor perf
improvement for linking an internal app, tested on two machines:
```
smol-relocs baseline difference (95% CI)
sys_time 7.367 ± 0.138 7.543 ± 0.157 [ +0.9% .. +3.8%]
user_time 21.843 ± 0.351 21.861 ± 0.450 [ -1.3% .. +1.4%]
wall_time 20.301 ± 0.307 20.556 ± 0.324 [ +0.1% .. +2.4%]
samples 16 16
smol-relocs baseline difference (95% CI)
sys_time 2.923 ± 0.050 2.992 ± 0.018 [ +1.4% .. +3.4%]
user_time 10.345 ± 0.039 10.448 ± 0.023 [ +0.8% .. +1.2%]
wall_time 12.068 ± 0.071 12.229 ± 0.021 [ +1.0% .. +1.7%]
samples 15 12
```
More importantly though, this change by itself reduces our maximum
resident set size by 220 MB (2.75%, from 7.85 GB to 7.64 GB) on the
first machine. On the second machine, it reduces it by 125 MB (1.94%,
from 6.31 GB to 6.19 GB).
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113818
We can lay out Symbol more optimally to reduce its size from 56 bytes to
48 bytes by eliminating unnecessary padding, and we can lay out Defined
such that its bitfield members are placed in the tail padding of Symbol
(on ABIs which support this), to reduce it from 96 bytes to 80 bytes (8
bytes from the Symbol reduction, and 8 bytes from the tail padding
reuse).
This is perf-neutral for an internal app (results from two different
machines):
```
smol-syms baseline difference (95% CI)
sys_time 7.430 ± 0.202 7.440 ± 0.193 [ -2.6% .. +2.9%]
user_time 21.443 ± 0.513 21.206 ± 0.396 [ -3.3% .. +1.1%]
wall_time 20.453 ± 0.534 20.222 ± 0.488 [ -3.7% .. +1.5%]
samples 9 8
smol-syms baseline difference (95% CI)
sys_time 3.011 ± 0.050 3.040 ± 0.052 [ -0.4% .. +2.3%]
user_time 10.416 ± 0.075 10.496 ± 0.091 [ +0.1% .. +1.4%]
wall_time 12.229 ± 0.144 12.354 ± 0.192 [ -0.1% .. +2.1%]
samples 14 13
```
However, on the first machine, it reduces maximum resident set size by
65.9 MB (0.8%, from 7.92 GB to 7.85 GB). On the second machine, it
reduces it by 92 MB (1.4%, from 6.40 GB to 6.31 GB).
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113813
It was checking for 64-bit builds incorrectly. Unfortunately,
ConcatInputSection has grown a bit in the meantime, and I don't see any
obvious way to shrink it. Perhaps icfEqClass could use 32-bit hashes
instead of 64-bit ones, but xxHash64 is supposed to be much faster than
xxHash32 (https://github.com/Cyan4973/xxHash#benchmarks), so that sounds
like a loss. (Unrelatedly, we should really look at using XXH3 instead
of xxHash64 now.)
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113809
This is an NFC diff that prepares for pruning & relocating `__eh_frame`.
Along the way, I made the following changes to ...
* clarify usage of `section` vs. `subsection`
* remove `map` & `vec` from type names
* disambiguate class `Section` from template parameter `SectionHeader`.
Differential Revision: https://reviews.llvm.org/D113241
[NFC] As part of using inclusive language within the llvm project, this patch
replaces master with merged in these comments.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D113903
Non-allocatable sections are not part of the memory image of the
program, so there is no need to find memory regions for them either
matching properties or handling explicit assignments. The early test
and return help to simplify LinkerScript::findMemoryRegion() a bit.
Differential Revision: https://reviews.llvm.org/D113768
```
/Users/ksmiley/dev/llvm-project/lld/MachO/Symbols.cpp:43:27: warning: field 'external' will be initialized after field 'weakDefCanBeHidden' [-Wreorder-ctor]
weakDef(isWeakDef), external(isExternal),
^
1 warning generated.
```
Differential Revision: https://reviews.llvm.org/D113823
autohide symbols behaves similarly to private_extern symbols.
However, LD64 allows exporting autohide symbols. LLD currently does not.
This patch allows LLD to export them.
Differential Revision: https://reviews.llvm.org/D113167
(Split from D113167)
Benchmarking on one of our large apps which exports a few thousands symbols,
this showed an improvement of ~17%.
x ./LLD_no_parallel.txt
+ ./LLD_with_parallel.txt
N Min Max Median Avg Stddev
x 10 84.01 89.41 88.64 87.693 1.7424061
+ 10 71.9 74.29 72.63 72.753 0.77734663
Difference at 95.0% confidence
-14.94 +/- 1.26763
-17.0367% +/- 1.44553%
(Student's t, pooled s = 1.34912)
(wallclock)
Differential Revision: https://reviews.llvm.org/D113820
Similar to D113702, but for the LSDAs. Clang seems to emit all LSDA
relocs as section relocs, but ld -r can turn those relocs into symbol
ones.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113721
Dedup'ing unwind info is tricky because each CUE contains a different
function address, if ICF operated naively and compared the entire
contents of each CUE, entries with identical unwind info but belonging
to different functions would never be considered identical. To work
around this problem, we slice away the function address before
performing ICF. We rely on `relocateCompactUnwind()` to correctly handle
these truncated input sections.
Here are the numbers before and after D109944, D109945, and this diff
were applied, as tested on my 3.2 GHz 16-Core Intel Xeon W:
Without any optimizations:
base diff difference (95% CI)
sys_time 0.849 ± 0.015 0.896 ± 0.012 [ +4.8% .. +6.2%]
user_time 3.357 ± 0.030 3.512 ± 0.023 [ +4.3% .. +5.0%]
wall_time 3.944 ± 0.039 4.032 ± 0.031 [ +1.8% .. +2.6%]
samples 40 38
With `-dead_strip`:
base diff difference (95% CI)
sys_time 0.847 ± 0.010 0.896 ± 0.012 [ +5.2% .. +6.5%]
user_time 3.377 ± 0.014 3.532 ± 0.015 [ +4.4% .. +4.8%]
wall_time 3.962 ± 0.024 4.060 ± 0.030 [ +2.1% .. +2.8%]
samples 47 30
With `-dead_strip` and `--icf=all`:
base diff difference (95% CI)
sys_time 0.935 ± 0.013 0.957 ± 0.018 [ +1.5% .. +3.2%]
user_time 3.472 ± 0.022 6.531 ± 0.046 [ +87.6% .. +88.7%]
wall_time 4.080 ± 0.040 5.329 ± 0.060 [ +30.0% .. +31.2%]
samples 37 30
Unsurprisingly, ICF is now a lot slower, likely due to the much larger
number of input sections it needs to process. But the rest of the
linker only suffers a mild slowdown.
Note that the compact-unwind-bad-reloc.s test was expanded because we
now handle the relocation for CUE's function address in a separate code
path from the rest of the CUE relocations. The extended test covers both
code paths.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D109946
Clang seems to emit all functionAddress relocs as section relocs, but
`ld -r` can turn those relocs into symbol ones. It turns out that we
weren't handling that case correctly when the symbol was a weak def
whose definition did not prevail.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113702
Previously if you passed `-oso_prefix path/to/foo/` with a trailing
slash at the end, using `real_path` would remove that slash, but that
slash is necessary to make sure OSO prefix paths end up as valid
relative paths instead of starting with `/`.
Differential Revision: https://reviews.llvm.org/D113541
This brings back the original version of D81359.
I have found several use cases now.
* Unlike GNU ld, LLD's relocation processing is one pass. If we decide to
optimize(relax) R_X86_64_{,REX_}GOTPCRELX, we will suppress GOT generation and
cannot undo the decision later. Optimizing R_X86_64_REX_GOTPCRELX can usually
make it easy to hit `relocation R_X86_64_REX_GOTPCRELX out of range` because
the distance to GOT is usually shorter. Without --no-relax, the user has to
recompile with `-Wa,-mrelax-relocations=no`.
* The option would help during my investigationg of the root cause of https://git.kernel.org/linus/09e43968db40c33a73e9ddbfd937f46d5c334924
* There is need for relaxation for AArch64 & RISC-V. Implementing this for
x86-64 improves consistency with little target-specific cost (two-line
X86_64.cpp change).
Reviewed By: alexander-shaposhnikov
Differential Revision: https://reviews.llvm.org/D113615
Clang seems to emit all functionAddress relocs as section relocs, but
`ld -r` can turn those relocs into symbol ones. It turns out that we
weren't handling that case correctly when the symbol was a weak def
whose definition did not prevail.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113702
This change implements support for R_ARM_THM_JUMP8 relocation in
addition to R_ARM_THM_JUMP11 which is already supported by LLD.
Differential Revision: https://reviews.llvm.org/D21225
An orphan section should be placed in the same memory region as its
anchor section if the latter specifies the memory region explicitly.
If there is no explicit assignment for the anchor section in the linker
script, its memory region is selected by matching attributes, and the
same should be done for the orphan section.
Before the patch, some scripts that were handled smoothly in GNU ld
caused an "error: no memory region specified for section" in lld.
Differential Revision: https://reviews.llvm.org/D112925
Previously, our unwind info finalization logic assumed that the LSDA
section referenced by `__compact_unwind` was already finalized before
`__TEXT,__unwind_info` itself. However, that assumption could be broken
by the use of `-rename_section` -- it could be (and is) used to move
`__gcc_except_tab` it into a different segment later in the file.
(__TEXT is always the first non-zerofill segment, so any rename
basically guarantees that the section will be ordered after
`__unwind_info`.)
To handle this case, we compare LSDA relocations instead of their final
values in `UnwindInfoSection::finalize()`, and we actually relocate
those LSDAs in `UnwindInfoSection::writeTo()`. In order to do this, we
need an easy way to track which Symbol a given CUE corresponds to. My
solution was to change our `cuPtrVector` into a vector of indices, with
each index used for both the symbols vector (`symbolsVec`) as well as
the CUE vector (`cuVector`).
This change seems perf neutral. Numbers for linking chromium_framework
on my 16 core Mac Pro:
base diff difference (95% CI)
sys_time 1.248 ± 0.025 1.245 ± 0.026 [ -1.3% .. +0.8%]
user_time 3.588 ± 0.045 3.587 ± 0.037 [ -0.6% .. +0.5%]
wall_time 4.605 ± 0.069 4.595 ± 0.069 [ -1.0% .. +0.5%]
samples 42 26
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D113582
PR52408 reported an sh_info=0 instance. I have seen sh_info=0
independently before.
sh_info>=num_sections is probably very rare. Just use one diagnostic for
the two types of errors.
Delete invalid-relocations.test which is covered by invalid/bad-reloc-target.test
Differential Revision: https://reviews.llvm.org/D113466
PR/52372
Differential Revision: https://reviews.llvm.org/D112977
New changes:
- use llvm-otool instead of `otool` which doesn't in exist on non-OSX platforms
- add llvm-otool to the set of tools used by test so that the bot will use the <build_dir>/bin/llvm-otool instead of the unqualified `llvm-otool` (which may not exist)
- update tests since the latest (TOT) llvm-otool prints a space between two bytes and the old one doesn't.
The outdated documentation diverges a lot from the current state of
COFF/Mach-O/ELF/wasm ports and may just confuse users. It is better rewriting
some if useful.
Tested with `ninja docs-lld-html`
Reviewed By: #lld-macho, lhames, Jez Ng
Differential Revision: https://reviews.llvm.org/D113432
[NFC] This patch fixes URLs containing "master". Old URLs were either broken or
redirecting to the new URL.
Reviewed By: #libc, ldionne, mehdi_amini
Differential Revision: https://reviews.llvm.org/D113186
This removes the tablegen based parsing of LC_LINKER_OPTION since it can
only actually contain a very small number of potential arguments. In our
project with tablegen this took 5 seconds before.
This replaces https://reviews.llvm.org/D113075
Differential Revision: https://reviews.llvm.org/D113235
This diff makes several amendments to the local file caching mechanism
which was migrated from ThinLTO to Support in
rGe678c51177102845c93529d457b020f969125373 in response to follow-up
discussion on that commit.
Patch By: noajshu
Differential Revision: https://reviews.llvm.org/D113080
This undocumented ld64 flag, based on the most recent ld64 source dump
from Xcode 12, only applies to i386. It seems like on all newer
architectures this behavior is the default.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113070
In one of our links lld was reading 760k files, but the unique number of
files was only 1500. This takes that link from 30 seconds to 8.
This seems like a heavy hammer, especially since some things don't need
to be cached, like the filelist arguments and the passed static
archives (the latter is already cached as a one off), but it seems ld64
does something similar here to short circuit these duplicate reads:
82e429e186/src/ld/InputFiles.cpp (L644-L665)
Of the types of files being read for our iOS app, the biggest problem
was constantly re-reading small tbd files:
```
% wc -l /tmp/read.txt
761414 /tmp/read.txt
% cat /tmp/read.txt | sort -u | wc -l
1503
% cat /tmp/read.txt | grep "\.a$" | wc -l
43721
% cat /tmp/read.txt | grep "\.tbd$" | wc -l
717656
```
We could likely hoist this logic up to not cache at this level, but it
would be a more invasive change to make sure all callers that needed it
cached the results.
I could see this being an issue with OOMs, and I'm not a linker expert so
maybe there's another way we should solve this problem? Feedback welcome!
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D113153
By default with ld64, architecture mismatches are just warnings, then
this flag can be passed to make these fail. This matches that behavior.
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D113082
D101513 means that we no longer need to specify `-pie` in most of our
test RUN commands. Let's clean up the unused flags so as not to confuse
future test writers.
Reviewed By: #lld-macho, oontvoo, MaskRay
Differential Revision: https://reviews.llvm.org/D113114
I'm not sure what the history is here but this test passes on macOS
today. It seems like we should unify these tests if they need to run
cross platform.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113085
On our large iOS project this took a link from 1 minute 45 seconds to 45
seconds. For reference ld64 does the same link in ~20 seconds.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D113063
This reverts commit 5cbec88cbf.
Vitaly said that 2faac77f26 actually works.
Sanitizer's armv7-linux-androideabi24 configuration has other issues which haven't been identified yet, but that's unrelated to the empty symbol name issue.
Symbol's subclasses all have an additional bitfield of type uint8_t (RefState enum).
For the bitfields in the same block tomerge, they should be of the same type. (clang/gcc will work, but others like MSVC does not)
Differential Revision: https://reviews.llvm.org/D113040
This matches ld64, and it's conceivable that projects try to read
this information off stderr for that reason.
--version keeps writing to stdout.
Differential Revision: https://reviews.llvm.org/D113020
One fewer warning.
In practice, lld already "implements" it. (ie., it does not do dtrace-dof processing ever).
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112934
LLD_IN_TEST determines how many times each port's `main` function is
run in each LLD process, and setting LLD_IN_TEST=2 (or higher) is useful
for checking if we're cleaning up and resetting global state correctly.
Add a test suite parameter to enable this easily. There's work in
progress to remove global state (e.g. D108850), but this seems useful in
the interim.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D112898
`fatal` should only be used for malformed inputs according to
ErrorHandler.h; `error` is more appropriate for missing arguments,
accompanied by a check to bail out early in case of the error. Some
tests need to be adjusted accordingly.
Makes `lld/test/MachO/arch.s` pass with `LLD_IN_TEST=2`.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112879
We need to reset global state between runs, similar to the other ports.
There's some file-static state which needs to be reset as well and we
need to add some new helpers for that.
With this change, most LLD Mach-O tests pass with `LLD_IN_TEST=2` (which
runs the linker twice on each test). Some tests will be fixed by the
remainder of this stack, and the rest are fundamentally incompatible
with that mode (e.g. they intentionally throw fatal errors).
Fixes PR52070.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112878
It's not used for anything yet, but we now accept `/pdbpagesize:4096`
(the default behavior) and we give arguably more useful diagnostics
for other values.
It's plumbed through to the MSF layer, so just uncommenting out
the bit in DriverUtils.cpp that rejects args other than 4096 is enough
to try other values.
Differential Revision: https://reviews.llvm.org/D112871
The "symbol 'foo' has no type" diagnostic tries to inform that copy
relocation/canonical PLT entry cannot be used, but the diagnostic is often
incorrect and confusing.
The hint does not pull its weight:
* adding -Wl,-z,notext often won't work (relocation types other than `symbolRel`, e.g. `R_AARCH64_LDST32_ABS_LO12_NC`)
* for pure (no assembly) C/C++ projects, the "-fPIC" hint is sufficient
When comparing relocations against two symbols, ICF's equalsConstant() did not
look at the value of the two symbols. With subsections_via_symbols, the value
is usually 0 but not always: In particular, it isn't 0 for constants in string
and literal sections. Since we ignored the value, comparing two constant string
symbols or two literal symbols always compared the 0th's element, so functions
in the same TU always compared as equal.
This can cause mislinks, and, with -dead_strip, crashes.
Fixes PR52349, see that bug for lots of details and examples of mislinks.
While here, make the existing assembly in icf-literals.s a bit more realistic
(use leaq instead of movq with strings, and use foo(%rip) instead of
foo@gotpcrel(%rip)). This has no interesting effect, it just maybe makes the
test look a bit less surprising.
Differential Revision: https://reviews.llvm.org/D112862
Previously relocations were only generated for PIC output, but
relocations for TLS GOT entries are always needed when shared
memory is enabled, not just in PIC mode.
This means that the `__wasm_apply_global_tls_relocs` is now
generated even for statically linked (non-PIC) output. Without
this the globals that hold the addresses of TLS symbols are
not set correctly.
Differential Revision: https://reviews.llvm.org/D112833
In the shared memory case we can always assume that TLS addresses
are relative to __tls_base. In the non-shared memory case TLS
variables are absolute, just like normal data addresses.
This simplifies the code in calcNewValue so that TLS relocations
no longer need special handling.
Differential Revision: https://reviews.llvm.org/D112831
In particular, they should not cause archives to be eagerly loaded. This
matches ld64's behavior.
Fixes PR52246.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112756
Having to remember to call `canonical()` all over the place is
error-prone; let's do it in a centralized location instead. It also
appears to improve performance slightly.
base diff difference (95% CI)
sys_time 0.984 ± 0.009 0.983 ± 0.014 [ -0.8% .. +0.6%]
user_time 6.508 ± 0.035 6.475 ± 0.036 [ -0.8% .. -0.2%]
wall_time 5.321 ± 0.034 5.300 ± 0.033 [ -0.7% .. -0.1%]
samples 36 23
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112687
Previously we were relying on the dynamic loader to take care of this
but it simple and correct for us to do it here instead.
Now we initialize bss segments as part of `__wasm_init_memory` at the
same time we initialize passive segments.
In addition we extent the us of `__wasm_init_memory` outside of shared
memory situations. Specifically it is now used to initialize bss
segments when the memory is imported.
Differential Revision: https://reviews.llvm.org/D112667
Many diagnostics use `getErrorPlace` or `getErrorLocation` to report a location.
In the presence of line table debug information, `getErrorPlace` uses a source
file location and ignores the object file location. However, the object file
location is sometimes more useful.
This patch changes "undefined symbol" and "out of range" diagnostics to report
both object/source file locations. Other diagnostics can use similar format if
needed.
The key idea is to let `InputSectionBase::getLocation` report the object file
location and use `getSrcMsg` for source file/line information. `getSrcMsg`
doesn't leverage `STT_FILE` information yet, but I think the temporary lack of
the functionality is ok.
For the ARM "branch and link relocation" diagnostic, I arbitrarily place the
source file location at the end of the line. The diagnostic is not very common
so its formatting doesn't need to be pretty.
Differential Revision: https://reviews.llvm.org/D112518
There are a couple internal builds that require the use of this flag.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D112594
ICF runs before relocation processing, but undefined symbol errors
are only emitted during relocation processing.
So just ignore Undefineds during ICF (instead of crashing) -- lld
will emit an error once ICF is done.
Fixes PR52330.
Differential Revision: https://reviews.llvm.org/D112643
Otherwise tools like codesign_allocate will choke. We were already
handling this correctly for the other DYLD_INFO sections.
Doing this correctly is a bit subtle: we don't know if export_size will
be zero until we have run `ExportSection::finalizeContents()`. However,
we must still add the ExportSection to the `__LINKEDIT` segment in order
that it gets sorted during `sortSectionsAndSegments()`.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D112589
WordLiteralSection dedupes literals by content.
WordLiteralInputSection::getOffset() used to read a literal at the passed-in
offset and look up this value in the deduping map to find the offset of the
deduped value.
But it's possible that (e.g.) a 16-byte literal's value is accessed 4 bytes in.
To get the offset at that address, we have to get the deduped value at offset 0
and then apply the offset 4 to the result.
(See also WordLiteralSection::finalizeContents() which fills in those maps.)
Only a problem on arm64 because in x86_64 the offset is part of the instruction
instead of a separate ARM64_RELOC_ADDEND relocation. (See bug for more details.)
Fixes PR51999.
Differential Revision: https://reviews.llvm.org/D112584
For `InputSection` `.foo`, its `InputBaseSection::{areRelocsRela,firstRelocation,numRelocation}` basically
encode the information of `.rel[a].foo`. However, one uint32_t (the relocation section index)
suffices. See the implementation of `relsOrRelas`.
This change decreases sizeof(InputSection) from 184 to 176 on 64-bit Linux.
The maximum resident set size linking a large application (1.2G output) decreases by 0.39%.
Differential Revision: https://reviews.llvm.org/D112513
Broken by a9353dbe51.
Now that the functions point to the compact unwind entries, instead of
the other way around, we need to perform the "invalid reference" check
in a different place.
This change was originally part of the stacked diff D109946, but should
have been included as part of D109945.
**Context:**
This is a second attempt at introducing signature regeneration to llvm-objcopy. In this diff: https://reviews.llvm.org/D109840, a script was introduced to test
the validity of a code signature. In this diff: https://reviews.llvm.org/D109803 (now reverted), an effort was made to extract the signature generation behavior out of LLD into a common location for use in llvm-objcopy. In this diff: https://reviews.llvm.org/D109972 it was decided that there was no appropriate common location and that a small amount of duplication to bring signature generation to llvm-objcopy would be better. This diff introduces this duplication.
**Summary**
Prior to this change, if a LC_CODE_SIGNATURE load command
was included in the binary passed to llvm-objcopy, the command and
associated section were simply copied and included verbatim in the
new binary. If rest of the binary was modified at all, this results
in an invalid Mach-O file. This change regenerates the signature
rather than copying it.
The code_signature_lc.test test was modified to include the yaml
representation of a small signed MachO executable in order to
effectively test the signature generation.
Reviewed By: alexander-shaposhnikov, #lld-macho
Differential Revision: https://reviews.llvm.org/D111164
This diff does away with `addEntriesForFunctionsWithoutUnwindInfo()`,
because `addSymbol()` can now determine which functions need those
entries.
While overhauling UnwindInfoSection, I also parallelized the relocation
of the contents of the CUEs. This somewhat offsets the time regression
from creating one InputSection per CUE (which was done in D109944).
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D109945
Compact unwind entries (CUEs) contain pointers to their respective
function symbols. However, during the link process, it's far more useful
to have pointers from the function symbol to the CUE than vice versa.
This diff adds that pointer in the form of `Defined::compactUnwind`.
In particular, when doing dead-stripping, we want to mark CUEs live when
their function symbol is live; and when doing ICF, we want to dedup
sections iff the symbols in that section have identical CUEs. In both
cases, we want to be able to locate the symbols within a given section,
as well as locate the CUEs belonging to those symbols. So this diff also
adds `InputSection::symbols`.
The ultimate goal of this refactor is to have ICF support dedup'ing
functions with unwind info, but that will be handled in subsequent
diffs. This diff focuses on simplifying `-dead_strip` --
`findFunctionsWithUnwindInfo` is no longer necessary, and
`Defined::isLive()` is now a lot simpler. Moreover, UnwindInfoSection no
longer has to check for dead CUEs -- we simply avoid adding them in the
first place.
Additionally, we now support stripping of dead LSDAs, which follows
quite naturally since `markLive()` can now reach them via the CUEs.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D109944
We were previously always emitting the GOT into `__DATA_CONST`, even for
target platforms where it should end up in `__DATA`.
I stumbled onto this while trying to use the `class-dump` tool -- with
the wrong segment names, it fails to locate the ObjC runtime info and
therefore fails to dump any classes.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D112500
This is what ld64 does too, so we have parity here (though I think ld64
still removes dead code more effectively than we do...)
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D112485
The hack is irrelevant for two reasons:
* binutils 2.24 is quite old and cannot handle R_X86_64_REX_GOTPCRELX from 2016 onwards anyway
* `canMergeToProgbits` allows combining SHT_INIT_ARRAY/SHT_FINI_ARRAY into SHT_PROGBITS
For a function call (using the default `-fplt`), GCC `-mcmodel=large` generates an assembly modifier which
leads to an R_X86_64_PLTOFF64 relocation. In real world,
http://git.ageinghacker.net/jitter (used by GNU poke) uses `-mcmodel=large`.
R_X86_64_PLTOFF64's formula is (if preemptible) `L - GOT + A` or (if non-preemptible) `S - GOT + A`
where `GOT` is (confusingly) the address of `.got.plt`
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D112386
Taken from Chih-Mao Chen's D100835.
RelExpr has 64 bits now and needs the extension to support new members
(`R_PLT_GOTPLT` for `R_X86_64_PLTOFF64` support).
Note: RelExpr needs to have at least a member >=64 to prevent
-Wtautological-constant-out-of-range-compare for `if (expr >= 64)`.
Reviewed By: arichardson, peter.smith
Differential Revision: https://reviews.llvm.org/D112385
GNU ld doesn't support `--no-pic-executable`.
`-p` has been removed from likely the only use case (Linux kernel) for over 2.5 years: https://git.kernel.org/linus/091bb549f7722723b284f63ac665e2aedcf9dec9
`--no-add-needed` was the pre-binutils-2.23 spelling for `--no-copy-dt-needed-entries`.
The legacy alias is irrelevant in 2021.
While attempting to simplify it, I discovered a concerning discrepancy
between our handling of LC_LINKER_OPTION vs ld64's. In particular, ld64
does not appear to check for `-all_load` nor `-ObjC` when processing
those options. Thus, if/when we fix this behavior, no duplicate symbol
error will be expected regardless of the use-after-free. As such, I've
removed the test logic that tries to induce the duplicate symbol error.
We can just rely on ASAN to do the verification.
In order to make the test run on Windows, I've removed the symlink
logic. Both ld64 and LLD handle this un-symlinked framework just fine.
I also capitalized the framework name, since that's the typical
convention.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D112195
If segments are defined in a linker script, placing an orphan section
before the found closest-rank section can result in adding it in a
previous segment and changing flags of that segment. This happens if
the orphan section has a lower sort rank than the found section. To
avoid that, the patch forces orphan sections to be moved after the
found section if segments are explicitly defined.
Differential Revision: https://reviews.llvm.org/D111717
In Driver.cpp, addFramework used std::string instance to represent the path of a framework, which will be freed after the function returns. However, this string is stored in loadedArchive, which will be used later to compare with path of newly added frameworks. This caused https://bugs.llvm.org/show_bug.cgi?id=52133. A test is included in this commit to reproduce this bug.
Now resolveDylibPath returns a StringRef instance, and it uses StringSaver to save its data, then returns it to functions on the top. This ensures the resolved framework path is still valid after LC_LINKER_OPTION is parsed.
Reviewed By: int3, #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D111706
This change implements new DAG nodes TABLE_GET/TABLE_SET, and lowering
methods for load and stores of reference types from IR arrays. These
global LLVM IR arrays represent tables at the Wasm level.
Differential Revision: https://reviews.llvm.org/D111154
We would like to move ThinLTO’s battle-tested file caching mechanism to
the LLVM Support library so that we can use it elsewhere in LLVM.
Patch By: noajshu
Differential Revision: https://reviews.llvm.org/D111371
We would like to move ThinLTO’s battle-tested file caching mechanism to
the LLVM Support library so that we can use it elsewhere in LLVM.
Patch By: noajshu
Differential Revision: https://reviews.llvm.org/D111371
This change is derived from a test case we have locally but I could not
see an equivalent in LLD's testing.
Differential Revision: https://reviews.llvm.org/D111803
prepareSymbolRelocation() in Writer.cpp adds both symbols that need binding and
symbols relocated with a pointer relocation to the got.
Pointer relocations are emitted for non-movq GOTPCREL(%rip) loads. (movqs
become GOT_LOADs so that the linker knows they can be relaxed to leaqs, while
others, such as addq, become just GOT -- a pointer relocation -- since they
can't be relaxed in that way).
For example, this C file produces a private_extern GOT relocation when
compiled with -O2 with clang:
extern const char kString[];
const char* g(int a) { return kString + a; }
Linkers need to put pointer-relocated symbols into the GOT, but ld64 marks them
as LOCAL in the indirect symbol table. This matters, since `strip -x` looks at
the indirect symbol table when deciding what to strip.
The indirect symtab emitting code was assuming that only symbols that need
binding are in the GOT, but pointer relocations where there too. Hence, the
code needs to explicitly check if a symbol is a private extern.
Fixes https://crbug.com/1242638, which has some more information in comments 14
and 15. With this patch, the output of `nm -U` on Chromium Framework after
stripping now contains just two symbols when using lld, just like with ld64.
Differential Revision: https://reviews.llvm.org/D111852
This makes Wasm EH work with dynamic linking. So far we were only able
to handle destructors, which do not use any tags or LSDA info.
1. This uses `TargetExternalSymbol` for `GCC_except_tableN` symbols,
which points to the address of per-function LSDA info. It is more
convenient to use than `MCSymbol` because it can take additional
target flags.
2. When lowering `wasm_lsda` intrinsic, if PIC is enabled, make the
symbol relative to `__memory_base` and generate the `add` node. If
PIC is disabled, continue to use the absolute address.
3. Make tag symbols (`__cpp_exception` and `__c_longjmp`) undefined in
the backend, because it is hard to make it work with dynamic
linking's loading order. Instead, we make all tag symbols undefined
in the LLVM backend and import it from JS.
4. Add support for undefined tags to the linker.
Companion patches:
- https://github.com/WebAssembly/binaryen/pull/4223
- https://github.com/emscripten-core/emscripten/pull/15266
Reviewed By: sbc100
Differential Revision: https://reviews.llvm.org/D111388
I think D79300 has fixed the D51892 (`__i686.get_pc_thunk.bx`) issue, so
we can bring back rL330869.
D79300 says `would error undefined symbol instead of the more relevant discarded section`
but it doesn't reproduce now.
This avoids a quirk in `isUndefWeak()`.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D111365
I noticed that we had this case in our internal testsuite but couldn't find it in LLD's tests.
This adds that case.
Differential Revision: https://reviews.llvm.org/D110716
This field only exists if the directory exists on the machine running
the test. It likely exists for most Intel macOS users because of
homebrew, but doesn't exist on some of the CI machines. This
unfortunately makes this test a bit less strict.
Differential Revision: https://reviews.llvm.org/D111361
Some subprojects like compiler-rt define the `darwin` feature in their
lit config, but lld does not do that, so we need to use the global
system-darwin here instead. This test seems to have drifted from the
actual behavior so I also had to add `/usr/local/lib` here to make it
pass.
Differential Revision: https://reviews.llvm.org/D111268
This removes `WasmTagType`. `WasmTagType` contained an attribute and a
signature index:
```
struct WasmTagType {
uint8_t Attribute;
uint32_t SigIndex;
};
```
Currently the attribute field is not used and reserved for future use,
and always 0. And that this class contains `SigIndex` as its property is
a little weird in the place, because the tag type's signature index is
not an inherent property of a tag but rather a reference to another
section that changes after linking. This makes tag handling in the
linker also weird that tag-related methods are taking both `WasmTagType`
and `WasmSignature` even though `WasmTagType` contains a signature
index. This is because the signature index changes in linking so it
doesn't have any info at this point. This instead moves `SigIndex` to
`struct WasmTag` itself, as we did for `struct WasmFunction` in D111104.
In this CL, in lib/MC and lib/Object, this now treats tag types in the
same way as function types. Also in YAML, this removes `struct Tag`,
because now it only contains the tag index. Also tags set `SigIndex` in
`WasmImport` union, as functions do.
I think this makes things simpler and makes tag handling more in line
with function handling. These two shares similar properties in that both
of them have signatures, but they are kind of nominal so having the same
signature doesn't mean they are the same element.
Also a drive-by fix: the reserved 'attirubute' part's encoding changed
from uleb32 to uint8 a while ago. This was fixed in lib/MC and
lib/Object but not in YAML. This doesn't change object files because the
field's value is always 0 and its encoding is the same for the both
encoding.
This is effectively NFC; I didn't mark it as such just because it
changed YAML test results.
Reviewed By: sbc100, tlively
Differential Revision: https://reviews.llvm.org/D111086
PT_LOAD segments in the program header must be sorted by their virtual
addresses, so they should be defined in a similar order as the
associated sections.
Differential Revision: https://reviews.llvm.org/D111068
This simplifies the code in a number of ways and avoids
having to track functions and their types separately.
Differential Revision: https://reviews.llvm.org/D111104
A number of the ICF tests were not updated to use --print-icf-sections
instead of --verbose and various '-NOT' checks were not updated to the
latest output format of --print-icf-sections. Because these are all
'negative' tests, these issues have gone unnoticed.
Differential Revision: https://reviews.llvm.org/D110353
Try to address Windows flakes from d87bdc272b
by adding "|| true" as suggested in D110276 so the whole test doesn't
fail when Windows thinks it can't remove the binary.
Instead, just make the later flag win, like usual.
Implement this by making -no_deduplicate an actual alias for --icf=none
at the Options.td level.
Differential Revision: https://reviews.llvm.org/D110672
In looking at the disk space used by a ninja check-all, I found that a
few of the largest files were copies of clang and lld made into temp
directories by a couple of tests. These tests were added in D53021 and
D74811. Clean up these copies after usage.
Differential Revision: https://reviews.llvm.org/D110276
The ARM backend was explicitly setting global binding on the personality
symbol. This was added without any comment in a7ec2dcefd, which
introduced EHABI support (back in 2011). None of the other backends do
anything equivalent, as far as I can tell.
This causes problems when attempting to wrap the personality symbol.
Wrapped symbols are marked as weak inside LTO to inhibit IPO (see
https://reviews.llvm.org/D33621). When we wrap the personality symbol,
it initially gets weak binding, and then the ARM backend attempts to
change the binding to global, which causes an error in MC because of
attempting to change the binding of a symbol from non-global to global
(the error was added in https://reviews.llvm.org/D90108).
Simply drop the ARM backend's explicit global binding setting to fix
this. This matches all the other backends, and a large internal
application successfully linked and ran with this change, so it
shouldn't cause any problems. Test via LLD, since wrapping is required
to exhibit the issue.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D110609
* Add a newline before `DYNAMIC RELOCATION RECORDS` (see D101796)
* Add the missing `OFFSET TYPE VALUE` line
* Align columns
Note: llvm-readobj/ELFDumper.cpp `loadDynamicTable` has sophisticated PT_DYNAMIC
code which is unavailable in llvm-objdump.
Reviewed By: jhenderson, Higuoxing
Differential Revision: https://reviews.llvm.org/D110595
Most architectures use .got instead of .got.plt, so switching the default can
minimize customization.
This fixes an issue for SPARC V9 which uses .got .
AVR, AMDGPU, and MSP430 don't seem to use _GLOBAL_OFFSET_TABLE_.
Without such wrapping, linking lld fails with missing symbols because of
C++ symbol mangling with older versions of the MacOSX SDK, in which
xar.h doesn't have an extern "C" block itself.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D110224
(As I mentioned in https://reviews.llvm.org/D62609#1534158 ,
the condition for using bti c for executable can be loosened.)
In two cases the address of a PLT may escape:
* canonical PLT entry for a STT_FUNC
* non-preemptible STT_GNU_IFUNC which is converted to STT_FUNC
The first case can be detected with `needsPltAddr`.
The second case is not straightforward to detect because for the Relocations.cpp
created `directSym`, it's difficult to know whether the associated `sym` has
exercised the `!needsPlt(expr)` code path. Just use the conservative `isInIplt`
condition. A non-preemptible ifunc not referenced by non-GOT-generating
non-PLT-generating relocations will have an unneeded `bti c`, but the cost is acceptable.
The second case fixes a bug as well: a -shared link may have non-preemptible ifunc.
Before the patch we did not emit `bti c` and could be wrong if the PLT address escaped.
GNU ld doesn't handle the case: `relocation R_AARCH64_ADR_PREL_PG_HI21 against STT_GNU_IFUNC symbol 'ifunc2' isn't handled by elf64_aarch64_final_link_relocate` (https://sourceware.org/bugzilla/show_bug.cgi?id=28370)
For -shared, if BTI is enabled but PAC is disabled, the PLT entry size increases
from 16 to 24 because we have to select the PLT scheme early, but the cost is
acceptable.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D110217
Currenlty PseudoProbeInserter is a pass conditioned on a target switch. It works well with a single clang invocation. It doesn't work so well when the backend is called separately (i.e, through the linker or llc), where user has always to pass -pseudo-probe-for-profiling explictly. I'm making the pass a default pass that requires no command line arg to trigger, but will be actually run depending on whether the CU comes with `llvm.pseudo_probe_desc` metadata.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110209
Restore the checking of addresses in ICF test which was testing the
behaviour of ICF with regards to different alignments of otherwise
identical sections. Also make the test more robust to layout changes.
Differential Revision: https://reviews.llvm.org/D110090
Similar to D69607 but for archive member extraction unrelated to GC. This patch adds --why-extract=.
Prior art:
GNU ld -M prints
```
Archive member included to satisfy reference by file (symbol)
a.a(a.o) main.o (a)
b.a(b.o) (b())
```
-M is mainly for input section/symbol assignment <-> output section mapping
(often huge output) and the information may appear ad-hoc.
Apple ld64
```
__Z1bv forced load of b.a(b.o)
_a forced load of a.a(a.o)
```
It doesn't say the reference file.
Arm's proprietary linker
```
Selecting member vsnprintf.o(c_wfu.l) to define vsnprintf.
...
Loading member vsnprintf.o from c_wfu.l.
definition: vsnprintf
reference : _printf_a
```
---
--why-extract= gives the user the full data (which is much shorter than GNU ld
-Map). It is easy to track a chain of references to one archive member with a
one-liner, e.g.
```
% ld.lld main.o a_b.a b_c.a c.a -o /dev/null --why-extract=- | tee stdout
reference extracted symbol
main.o a_b.a(a_b.o) a
a_b.a(a_b.o) b_c.a(b_c.o) b()
b_c.a(b_c.o) c.a(c.o) c()
% ruby -ane 'BEGIN{p={}}; p[$F[1]]=[$F[0],$F[2]] if $.>1; END{x="c.a(c.o)"; while y=p[x]; puts "#{y[0]} extracts #{x} to resolve #{y[1]}"; x=y[0] end}' stdout
b_c.a(b_c.o) extracts c.a(c.o) to resolve c()
a_b.a(a_b.o) extracts b_c.a(b_c.o) to resolve b()
main.o extracts a_b.a(a_b.o) to resolve a
```
Archive member extraction happens before --gc-sections, so this may not be a live path
under --gc-sections, but I think it is a good approximation in practice.
* Specifying a file avoids output interleaving with --verbose.
* Required `=` prevents accidental overwrite of an input if the user forgets `=`. (Most of compiler drivers' long options accept `=` but not ` `)
Differential Revision: https://reviews.llvm.org/D109572
Original commit description:
[LLD] Remove global state in lld/COFF
This patch removes globals from the lldCOFF library, by moving globals
into a context class (COFFLinkingContext) and passing it around wherever
it's needed.
See https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html for
context about removing globals from LLD.
I also haven't moved the `driver` or `config` variables yet.
Differential Revision: https://reviews.llvm.org/D109634
This reverts commit a2fd05ada9.
Original commits were b4fa71eed3
and e03c7e367a.
... instead of constructing a new one each time. This allows us
to take advantage of {D105305}.
I didn't see a substantial difference when linking chromium_framework,
but this paves the way for reusing similar logic for splitting compact
unwind entries into sections. There are a lot more of those, so the
performance impact is significant.
Differential Revision: https://reviews.llvm.org/D109895
Sometimes people intentionally re-define a dylib personlity symbol as a local defined symbol as a workaround to a ld -r bug.
As a result, we could see "too many personalities" to encode. This patch tries to handle this case by ignoring the local symbols entirely.
Differential Revision: https://reviews.llvm.org/D107533
Add a test to ensure that MachO files including
a LC_CODE_SIGNATURE load command produced by lld
are signed correctly.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D109840
Move the functionality in lld that handles writing of the LC_CODE_SIGNATURE load command and associated data section to a central reusable location.
This change is in preparation for another change that modifies llvm-objcopy to reproduce the LC_CODE_SIGNATURE load command and corresponding
data section to maintain the validity of signed macho object files passed through llvm-objcopy.
Reviewed By: #lld-macho, int3, oontvoo
Differential Revision: https://reviews.llvm.org/D109803
This test checks that timers are working and printing as expected.
I also seem to have changed the order of the timers in my globals refactoring
patch, so I fixed it here.
Differential Revision: https://reviews.llvm.org/D109904
This patch removes globals from the lldCOFF library, by moving globals
into a context class (COFFLinkingContext) and passing it around wherever
it's needed.
See https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html for
context about removing globals from LLD.
I also haven't moved the `driver` or `config` variables yet.
Differential Revision: https://reviews.llvm.org/D109634
This way, we do not need to set LLVM_CMAKE_PATH to LLVM_CMAKE_DIR when (NOT LLVM_CONFIG_FOUND)
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D107717
Rather than depending on the hex dump from obj2yaml. Now the test shows the
expected function body in a human readable format.
Differential Revision: https://reviews.llvm.org/D109730
This matters for example for the iPhoneSimulator14.0.sdk, which has
a System/Library/Frameworks/UIKit.framework/UIKit that has
LC_BUILD_VERSION with minos of 14.0, so linking against that file
will produce warnings like:
.../iPhoneSimulator14.0.sdk/System/Library/Frameworks/UIKit.framework/UIKit
has version 14.0.0, which is newer than target minimum of 12.0.0
when targeting x86_64-apple-ios12.0-simulator. That doens't happen when
linking against UIKit.tbd instead, obviously.
Linking with RC_TRACE_DYLIB_SEARCHING=1 shows that ld64 also searches
the tbd file first, and we already get that right for non-framework
dylibs.
Fixes crbug.com/1249456.
Differential Revision: https://reviews.llvm.org/D109768
We previously had a limitation that TLS variables could not
be exported (and therefore could also not be imported). This
change removed that limitation.
Differential Revision: https://reviews.llvm.org/D108877
For multithreaded modules (i.e. modules with a shared memory), lld injects a
synthetic Wasm start function that is automatically called during instantiation
to initialize memory from passive data segments. Even though the module will be
instantiated separately on each thread, memory initialization should happen only
once. Furthermore, memory initialization should be finished by the time each
thread finishes instantiation. Since multiple threads may be instantiating their
modules at the same time, the synthetic function must synchronize them.
The current synchronization tries to atomically increment a flag from 0 to 1 in
memory then enters one of two cases. First, if the increment was successful, the
current thread is responsible for initializing memory. It does so, increments
the flag to 2 to signify that memory has been initialized, then notifies all
threads waiting on the flag. Otherwise, the thread atomically waits on the flag
with an expected value of 1 until memory has been initialized. Either the
initializer thread finishes initializing memory (i.e. sets the flag to 2) first
and the waiter threads do not end up blocking, or the waiter threads succesfully
start waiting before memory is initialized so they will be woken by the
initializer thread once it has finished.
One complication with this scheme is that there are various contexts on the Web,
most notably on the main browser thread, that cannot successfully execute a
wait. Executing a wait in these contexts causes a trap, and in this case would
cause instantiation to fail. The embedder must therefore ensure that these
contexts win the race and become responsible for initializing memory, since that
is the only code path that does not execute a wait.
Unfortunately, since only one thread can win the race and initialize memory,
this scheme makes it impossible to have multiple threads in contexts that cannot
wait. For example, it is not currently possible to instantiate the module on
both the main browser thread as well as in an AudioWorklet. To loosen this
restriction, this commit inserts an extra check so that the wait will not be
executed at all when memory has already been initialized, i.e. when the flag
value is 2. After this change, the module can be instantiated on threads in
non-waiting contexts as long as the embedder can guarantee either that the
thread will win the race and initialize memory (as before) or that memory has
already been initialized when instantiation begins. Threads in contexts that can
wait can continue racing to initialize memory.
Fixes (or at least improves) PR51702.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D109722
Remove some unnecessary logging from wasm-ld when running under
`--verbose`. Unlike `-debug` this logging is available in release
builds. This change makes it little more minimal/readable.
Also, avoid compiling the `debugWrite` function in releaase builds
where it does nothing. This should remove a lot debug strings from
the binary, and avoid having to construct unused debug strings at
runtime.
Differential Revision: https://reviews.llvm.org/D109583
In the case that TLS is used in the single-threaded program, and
therefore effectively lowered away, we still optionally create a
`__tls_base` symbols, but the code for setting it was assuming it was
always created.
Differential Revision: https://reviews.llvm.org/D109518
llvm::errs() is unbuffered. On a POSIX platform, composing a diagnostic
string may invoke the ::write syscall multiple times, which can be slow.
Buffer writes to a temporary SmallString when composing a single diagnostic to
reduce the number of ::write syscalls to one (also easier to read under
strace/truss).
For an invocation of ld.lld with 62000+ lines of
`ld.lld: warning: symbol ordering file: no such symbol: ` warnings (D87121),
the buffering decreases the write time from 1s to 0.4s (for /dev/tty) and
from 0.4s to 0.1s (for a tmpfs file). This can speed up
`relocation R_X86_64_PC32 out of range` diagnostic printing as well
with `--noinhibit-exec --no-fatal-warnings`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D87272
Failing to do so results in `std::bad_function_call` being
thrown when a pass tries to emit a diagnostic.
I've copied the relevant test over from LLD-ELF's test suite.
Reviewed By: #lld-macho, thevinster
Differential Revision: https://reviews.llvm.org/D109274
We end up calling resolveBranchVA(), which asserts for Undefineds.
As fix, just return early in Writer::run() if there are any diagnostics
after processing relocations (which is where undefined symbol errors are
emitted). This matches what the ELF port does.
Differential Revision: https://reviews.llvm.org/D109079
Fixes PR51578 in practice.
Currently there's only enough room for a single thunk, which for real-life code
isn't enough. The error case only happens when there are many branch statements
very close to each other (0 or 1 instructions apart), with the function at the
finalization barrier small.
There's a FIXME on what to do if we hit this case, but that suggestion sounds
complicated to me (see end of PR51578 comment 5 for why).
Instead, just leave more room for thunks. Chromium's unit_tests links fine with
room for 3 thunks. Leave room for 100, which should fix this for most cases in
practice.
There's little cost for leaving lots of room: This slop value only determines
when we finalize sections, and we insert thunks for forward jumps into
unfinalized sections. So leaving room means we'll need a few more thunks, but
the thunk jump range is 128 MiB while a single thunk is just 12 bytes.
For Chromium's unit_tests:
With a slop of 3: thunk calls = 355418, thunks = 10903
With a slop of 100: thunk calls = 355426, thunks = 10904
Chances are 100 is enough for all use cases we'll hit in practice, but even
bumping it to 1000 would probably be fine.
Differential Revision: https://reviews.llvm.org/D108930
- Move a few variables closer to their uses, remove some completely
(no behavior change)
- Add some comments
- Make maxPotentialThunks include calls to stubs. It's possible that
an earlier call to a stub late in the stub table will need a thunk,
and that inserted thunk could push a stub earlier in the stub table
out of range. This is unlikely to happen, but usually there are
way fewer stub calls than non-stub calls, so if we're doing a
conservative approximation here we might as well do it correctly.
(For chromium's unit_tests target, 134421/242639 stub calls are
direct calls without this change, compared to 134408/242639 with
this change)
No real, meaningful behavior difference.
Differential Revision: https://reviews.llvm.org/D108924
- Don't subtract thunkSize from branchRange. Most places care about
the actual maximal branch range. Subtract thunkSize in the one place
that wants to leave room for a thunk.
- Set it to 0x800_0000 instead of 0xFF_FFFF
- Subtract 4 for the positive branch direction since it's a
two's complement 24bit number sign-extended mutiplied by 4,
so its range is -0x800_0000..+0x7FF_FFFC
- Make boundary checks include the boundary values
This doesn't make a huge difference in practice. It's preparation
for a "real" fix for PR51578 -- but it also lets the repro in comment 0
in that bug place one more thunk before hitting the TODO.
Differential Revision: https://reviews.llvm.org/D108897
The assert is harmless and thinks worked fine in builds with asserts enabled,
but it's still nice to fix the assert.
Differential Revision: https://reviews.llvm.org/D108853
We currently complain "could not open /LTCG: no such file or directory",
which isn't very useful. We could emit a warning when we see this flag, but
just ignoring it seems fine.
Final missing part of PR38799.
Differential Revision: https://reviews.llvm.org/D108799
This is what ld64 does. Deviating in behavior here can result
in some subtle duplicate symbol errors, as detailed in the objc.s test.
Differential Revision: https://reviews.llvm.org/D108781
The previous logic was duplicated between symbol-initiated
archive loads versus flag-initiated loads (i.e. `-force_load` and
`-ObjC`). This resulted in code duplication as well as redundant work --
we would create Archive instances twice whenever we had one of those
flags; once in `getArchiveMembers` and again when we constructed the
ArchiveFile.
This was motivated by an upcoming diff where we load archive members
containing ObjC-related symbols before loading those containing
ObjC-related sections, as well as before performing symbol resolution.
Without this refactor, it would be difficult to do that while avoiding
loading the same archive member twice.
Differential Revision: https://reviews.llvm.org/D108780
This was missed by {D107035}. This fix addresses the following warning:
loop variable 'personality' has type 'const uint32_t &' (aka 'const unsigned int &') but is initialized with type 'const unsigned long long' resulting in a copy [-Wrange-loop-analysis]
In addition to fixing the size, I also removed the const reference,
since there's no performance benefit to avoiding copies of integer-sized
values.
If multiple /manifestdependency: flags are passed, they are
naively deduped, but after that each of them should have an
effect, instead of just the last one.
Also, /manifestdependency: flags are allowed in .drectve sections
(from `#pragma comment(linker, ...`). To make the interaction between
/manifestdependency: flags enabling manifest by default but
/manifest:no overriding this work, add an explict ManifestKind::Default
state to represent no explicit /manifest flag being passed.
To make /manifestdependency: flags from input file .drectve sections
work with /manifest:embed, delay embedded manifest emission until
after input files have been read.
Differential Revision: https://reviews.llvm.org/D108628
This CL is small, but the description can be a little long because I'm
trying to sum up the status quo for Emscripten/Wasm EH/SjLj options.
First, this CL adds an option for Wasm SjLj (`-wasm-enable-sjlj`), which
handles SjLj using Wasm EH. The implementation for this will be added as
a followup CL, but this adds the option first to do error checking.
This also adds an option for Wasm EH (`-wasm-enable-eh`), which has been
already implemented. Before we used `-exception-model=wasm` as the same
meaning as enabling Wasm EH, but after we add Wasm SjLj, it will be
possible to use Wasm EH instructions for Wasm SjLj while not enabling
EH, so going forward, to use Wasm EH, `opt` and `llc` will need this
option. This only affects `opt` and `llc` command lines and does not
affect Emscripten user interface.
Now we have two modes of EH (Emscripten/Wasm) and also two modes of SjLj
(also Emscripten/Wasm). The options corresponding to each of are:
- Emscripten EH: `-enable-emscripten-cxx-exceptions`
- Emscripten SjLj: `-enable-emscripten-sjlj`
- Wasm EH: `-wasm-enable-eh -exception-model=wasm`
`-mattr=+exception-handling`
- Wasm SjLj: `-wasm-enable-sjlj -exception-model=wasm`
`-mattr=+exception-handling`
The reason Wasm EH/SjLj's options are a little complicated are
`-exception-model` and `-mattr` are common LLVM options ane not under
our control. (`-mattr` can be omitted if it is embedded within the
bitcode file.)
And we have the following rules of the option composition:
- Emscripten EH and Wasm EH cannot be turned on at the same itme
- Emscripten SjLj and Wasm SjLj cannot be turned on at the same time
- Wasm SjLj should be used with Wasm EH
Which means we now allow these combinations:
- Emscripten EH + Emscripten SjLj: the current default in `emcc`
- Wasm EH + Emscripten SjLj:
This is allowed, but only as an interim step in which we are testing
Wasm EH but not yet have a working implementation of Wasm SjLj. This
will error out (D107687) in compile time if `setjmp` is called in a
function in which Wasm exception is used.
- Wasm EH + Wasm SjLj:
This will be the default mode later when using Wasm EH. Currently Wasm
SjLj implementation doesn't exist, so it doesn't work.
- Emscripten EH + Wasm SjLj will not work.
This CL moves these error checking routines to
`WebAssemblyPassConfig::addIRPasses`. Not sure if this is an ideal place
to do this, but I couldn't find elsewhere. Currently some checking is
done within LowerEmscriptenEHSjLj, but these checks only run if
LowerEmscriptenEHSjLj runs so it may not run when Wasm EH is used. This
moves that to `addIRPasses` and adds some more checks.
Currently LowerEmscriptenEHSjLj pass is responsible for Emscripten EH
and Emscripten SjLj. Wasm EH transformations are done in multiple
places, including WasmEHPrepare, LateEHPrepare, and CFGStackify. But in
the followup CL, LowerEmscriptenEHSjLj pass will be also responsible for
a part of Wasm SjLj transformation, because WasmSjLj will also be using
several Emscripten library functions, and we will be sharing more than
half of the transformation to do that between Emscripten SjLj and Wasm
SjLj.
Currently we have `-enable-emscripten-cxx-exceptions` and
`-enable-emscripten-sjlj` but these only work for `llc`, because for
`llc` we feed these options to the pass but when we run the pass using
`opt` the pass will be created with no options and the default options
will be used, which turns both Emscripten EH and Emscripten SjLj on.
Now we have one more SjLj option to care for, LowerEmscriptenEHSjLj pass
needs a finer way to control these options. This CL removes those
default parameters and make LowerEmscriptenEHSjLj pass read directly
from command line options specified. So if we only run
`opt -wasm-lower-em-ehsjlj`, currently both Emscripten EH and Emscripten
SjLj will run, but with this CL, none will run unless we additionally
pass `-enable-emscripten-cxx-exceptions` or `-enable-emscripten-sjlj`,
or both. This does not affect users; this only affects our `opt` tests
because `emcc` will not call either `opt` or `llc`. As a result of this,
our existing Emscripten EH/SjLj tests gained one or both of those
options in their `RUN` lines.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D107685
In the case of weakly defined symbols in shared libraries we now
generate both an import and an export. The dynamic linker can then
choose how a winner from among all the shared libraries that define a
given symbol.
Previously any direct usage of a weakly defined symbol would use the
DSO-local definition (For example, even through there would be single
address for a weakly defined function, each DSO could end up directly
calling its local version).
Fixes: https://github.com/emscripten-core/emscripten/issues/13773
Differential Revision: https://reviews.llvm.org/D108413
In PIC mode we import function address via `GOT.mem` imports but for
direct function calls we still import the first class function.
However, if the function is never directly called we can avoid the first
class import completely.
Differential Revision: https://reviews.llvm.org/D108345
The convention is not to check the prefix before `error: `.
This gives flexibility if we need to rename ld64.lld to something else,
(e.g. a while ago we used ld64.lld.darwinnew).
Address post follow up comment in D108016. Avoid creating isec for
LLVM segments since we are skipping over it.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D108167
There was an instance of a third-party archive containing multiple
_llvm symbols from different files that clashed with each other
producing duplicate symbols. Symbols under the LLVM segment
don't seem to be producing any meaningful value, so just ignore them.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D108016
In e72403f96d, we added the flag
"--no-dynamicbase" for disabling the dynamicbase flag which we set
by default. At the time, ld.bfd didn't have any corresponding
option (as ld.bfd defaulted to not setting the flag). Almost at
the same time, corresponding options were added to ld.bfd for
disabling it (while it was being enabled by default), with a
different name, "--disable-dynamicbase".
Thus add the "--disable-dynamicbase" option. Make this default
one advertised in the help listing, but keep the "--no-dynamicbase"
form as an alias. Also improve checking for the last option set
if there are multiple ones on the same command line.
Also add corresponding disable options for a lot of other flags
that we set by default, also added in ld.bfd in the same commit:
https://sourceware.org/git/?p=binutils-gdb.git;a=commitdiff;h=514b4e191d5f46de8e142fe216e677a35fa9c4bb
Differential Revision: https://reviews.llvm.org/D107930
When enable CSPGO for ThinLTO, there are profile cfg mismatch warnings that will cause lld-link errors (with /WX)
due to source changes (e.g. `#if` code runs for profile generation but not for profile use)
To disable it we have to use an internal "/mllvm:-no-pgo-warn-mismatch" option.
In contrast clang uses option ”-Wno-backend-plugin“ to avoid such warnings and gcc has an explicit "-Wno-coverage-mismatch" option.
Add "lto-pgo-warn-mismatch" option to lld COFF/ELF to help turn on/off the profile mismatch warnings explicitly when build with ThinLTO and CSPGO.
Differential Revision: https://reviews.llvm.org/D104431
When enable CSPGO for ThinLTO, there are profile cfg mismatch warnings that will cause lld-link errors (with /WX).
To disable it we have to use an internal "/mllvm:-no-pgo-warn-mismatch" option.
In contrast clang uses option ”-Wno-backend-plugin“ to avoid such warnings and gcc has an explicit "-Wno-coverage-mismatch" option.
Add this "lto-pgo-warn-mismatch" option to lld to help turn on/off the profile mismatch warnings explicitly when build with ThinLTO and CSPGO.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D104431
Now that we have https://reviews.llvm.org/D105539 we can
use objdump -d to actually check for instruction sequences
rather than binary blobs.
This is just an example of how to do that we should followup
with a wider ranging conversion of existing tests.
Differential Revision: https://reviews.llvm.org/D106897
Clang diagnostics refer to identifier names in quotes.
This patch makes inline remarks conform to the convention.
New behavior:
```
% clang -O2 -Rpass=inline -Rpass-missed=inline -S a.c
a.c:4:25: remark: 'foo' inlined into 'bar' with (cost=-30, threshold=337) at callsite bar:0:25; [-Rpass=inline]
int bar(int a) { return foo(a); }
^
```
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D107791
This adds thin archives to the map file test.
I noticed that we had this test-case in our downstream
testsuite but it wasn't in the upstream testing.
Differential revision: https://reviews.llvm.org/D107555
This patch enables compressed input sections on big-endian targets by
checking the target endianness and selecting an appropriate `Chdr`
structure.
Fixes PR51369
Differential Revision: https://reviews.llvm.org/D107635
See: http://45.33.8.238/macm1/15677/step_10.txt
This is a test that has `REQUIRES: x86` which means it never ran
before; I don't have a MachO environment but based on the FileCheck
output it looks like it should be sufficient to remove one CHECK line.
Copy relocation on a non-default version symbol is unsupported and can crash at
runtime. Fortunately there is a one-line fix which works for most cases:
ensure `getSymbolsAt` unconditionally returns `ss`.
If two non-default version symbols are defined at the same place and both
are copy relocated, our implementation will copy relocated them into different
addresses. The pointer inequality is very unlikely an issue. In GNU ld, copy
relocating version aliases seems to create more pointer inequality problems than
us.
(
In glibc, sys_errlist@GLIBC_2.2.5 sys_errlist@GLIBC_2.3 sys_errlist@GLIBC_2.4
are defined at the same place, but it is unlikely they are all copy relocated in
one executable. Even if so, the variables are read-only and pointer inequality
should not be a problem.
)
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107535
Currently version script patterns are ignored for .symver produced
non-default version (single @) symbols. This makes such symbols
not localizable by `local:`, e.g.
```
.symver foo3_v1,foo3@v1
.globl foo_v1
foo3_v1:
ld.lld --version-script=a.ver -shared a.o
```
This patch adds the support:
* Move `config->versionDefinitions[VER_NDX_LOCAL].patterns` to `config->versionDefinitions[versionId].localPatterns`
* Rename `config->versionDefinitions[versionId].patterns` to `config->versionDefinitions[versionId].nonLocalPatterns`
* Allow `findAllByVersion` to find non-default version symbols when `includeNonDefault` is true. (Note: `symtab` keys do not have `@@`)
* Make each pattern check both the unversioned `pat.name` and the versioned `${pat.name}@${v.name}`
* `localPatterns` can localize `${pat.name}@${v.name}`. `nonLocalPatterns` can prevent localization by assigning `verdefIndex` (before `parseSymbolVersion`).
---
If a user notices new `undefined symbol` errors with a version script containing
`local: *;`, the issue is likely due to a missing `global:` pattern.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107234
Now that D95204 switched default to new Darwin backend, rename some CMake
targets to match.
Reviewed By: #lld-macho, smeenai, int3
Differential Revision: https://reviews.llvm.org/D107516
Remnant after D72803.
Distributions who want to customize the string can customize
LLD_VERSION_STRING instead.
Reviewed By: #lld-macho, mstorsjo, thakis
Differential Revision: https://reviews.llvm.org/D107416
Due to an assembler design flaw (IMO), `.symver foo,foo@v1` produces two symbols `foo` and `foo@v1` if `foo` is defined.
* `v1 {};` produces both `foo` and `foo@v1`, but GNU ld only produces `foo@v1`
* `v1 { foo; };` produces both `foo@@v1` and `foo@v1`, but GNU ld only produces `foo@v1`
* `v2 { foo; };` produces both `foo@@v2` and `foo@v1`, matching GNU ld. (Tested by symver.s)
This patch implements the GNU ld behavior by reusing the symbol redirection mechanism
in D92259. The new test symver-non-default.s checks the first two cases.
Without the patch, the second case will produce `foo@v1` and `foo@@v1` which
looks weird and makes foo unnecessarily default versioned.
Note: `.symver foo,foo@v1,remove` exists but the unfortunate `foo` will not go
away anytime soon.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107235
Currently version script patterns are ignored for .symver produced
non-default version (single @) symbols. This makes such symbols
not localizable by `local:`, e.g.
```
.symver foo3_v1,foo3@v1
.globl foo_v1
foo3_v1:
ld.lld --version-script=a.ver -shared a.o
# In a.out, foo3@v1 is incorrectly exported.
```
This patch adds the support:
* Move `config->versionDefinitions[VER_NDX_LOCAL].patterns` to `config->versionDefinitions[versionId].localPatterns`
* Rename `config->versionDefinitions[versionId].patterns` to `config->versionDefinitions[versionId].nonLocalPatterns`
* Allow `findAllByVersion` to find non-default version symbols when `includeNonDefault` is true. (Note: `symtab` keys do not have `@@`)
* Make each pattern check both the unversioned `pat.name` and the versioned `${pat.name}@${v.name}`
* `localPatterns` can localize `${pat.name}@${v.name}`. `nonLocalPatterns` can prevent localization by assigning `verdefIndex` (before `parseSymbolVersion`).
---
If a user notices new `undefined symbol` errors with a version script containing
`local: *;`, the issue is likely due to a missing `global:` pattern.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107234
GNU ld doesn't support multiple SHF_TLS SHT_NOBITS output sections (it restores
the address after an SHF_TLS SHT_NOBITS section, so consecutive SHF_TLS
SHT_NOBITS sections will have conflicting address ranges).
That said, `threadBssOffset` implements limited support for consecutive SHF_TLS
SHT_NOBITS sections. (SHF_TLS SHT_PROGBITS following a SHF_TLS SHT_NOBITS can still be
incorrect.)
`.` in an output section description of an SHF_TLS SHT_NOBITS section is
incorrect. (https://lists.llvm.org/pipermail/llvm-dev/2021-July/151974.html)
This patch saves the end address of the previous tbss section in
`ctx->tbssAddr`, changes `dot` in the beginning of `assignOffset` so
that `.` evaluation will be correct.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107208
This is available in GNU ld 2.35 and can be seen as a shortcut for multiple
--export-dynamic-symbol, or a --dynamic-list variant without the symbolic intention.
In the long term, this option probably should be preferred over --dynamic-list.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107317
This does the same fix as D107237 but for a couple more options,
converting all remaining cases of such options to accept both
forms, for consistency. This fixes building e.g. openldap, which
uses --image-base=<value>.
Differential Revision: https://reviews.llvm.org/D107253
This option is a subset of -Bsymbolic-functions. It applies to STB_GLOBAL
STT_FUNC definitions.
The address of a vague linkage function (STB_WEAK STT_FUNC, e.g. an inline
function, a template instantiation) seen by a -Bsymbolic-functions linked
shared object may be different from the address seen from outside the shared
object. Such cases are uncommon. (ELF/Mach-O programs may use
`-fvisibility-inlines-hidden` to break such pointer equality. On Windows,
correct dllexport and dllimport are needed to make pointer equality work.
Windows link.exe enables /OPT:ICF by default so different inline functions may
have the same address.)
```
// a.cc -> a.o -> a.so (-Bsymbolic-functions)
inline void f() {}
void *g() { return (void *)&f; }
// b.cc -> b.o -> exe
// The address is different!
inline void f() {}
```
-Bsymbolic-non-weak-functions is a safer (C++ conforming) subset of
-Bsymbolic-functions, which can make such programs work.
Implementations usually emit a vague linkage definition in a COMDAT group. We
could detect the group (with more code) but I feel that we should just check
STB_WEAK for simplicity. A weak definition will thus serve as an escape hatch
for rare cases when users want interposition on definitions.
GNU ld feature request: https://sourceware.org/bugzilla/show_bug.cgi?id=27871
Longer write-up: https://maskray.me/blog/2021-05-16-elf-interposition-and-bsymbolic
If Linux distributions migrate to protected non-vague-linkage external linkage
functions by default, the linker option can still be handy because it allows
rapid experiment without recompilation. Protected function addresses currently
have deep issues in GNU ld.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D102570
ld64 seems to handle common symbols in bitcode rather
bizarrely. They follow entirely different precedence rules from their
non-bitcode counterparts. I initially tried to emulate ld64 in D106597,
but I'm not sure the extra complexity is worth it, especially given that
common symbols are not, well, very common.
This diff accords common bitcode symbols the same precedence as regular
common symbols, just as we treat all other pairs of bitcode and
non-bitcode symbol types. The tests document ld64's behavior in detail,
just in case we want to revisit this.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D107027
This is somewhat of a repeat of D66658 but for sections in PT_TLS
segments. Although such sections don't need to be aligned such that
address and offset are congruent modulo the page size, they do need
to be congruent modulo the segment alignment, otherwise the
whole PT_TLS will be unaligned. We therefore use the normal calculation
to determine the section's address within the PT_LOAD rather than
bailing out early due to being SHT_NOBITS.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D106987
This is a similar problem to D66658, where we are too aggressive in not
aligning NOBITS sections, and the tests are based on the ones added for
that fix. If a .tbss section is first in a PT_TLS segment (i.e. there is
no .tdata section) then, although it doesn't need to be aligned such
that address and offset are congruent modulo the page size, they do need
to be congruent modulo the segment alignment, otherwise the whole PT_TLS
will be unaligned.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D106986
This matches ld64's behavior, and makes it easier to fit LLD
into existing build systems.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D107011
clang may place dynamic initializations for explicitly specialized class
template static data members in comdat.
Such in-comdat SHT_INIT_ARRAY was an abuse but we have to work around it for a while.
Change removeUnusedSyntheticSections() to actually remove empty
SyntheticSections in inputSections.
In addition to doing what removeUnusedSyntheticSections() was meant
to do, this will also make the shuffle-sections tests, which shuffles
inputSections, less sensitive to empty Synthetic Sections that
will not appear in the final image.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D106427
Change-Id: I589eaf596472161a4395fb658aea0fad73318088
The test accidentally tested something else that makes lld fail
with a different (correct-looking) error that wasn't the one the
test tries to test for. (The test case before this change makes
ld64 hang in an infinite loop.)
Leave the name section in the output when using the --strip-debug
flag. This treats it more like ELF symbol tables, as the name
section has similar uses at runtime (e.g. wasm engines understand
it and it can be used for symbolization at runtime).
Fixes https://github.com/emscripten-core/emscripten/issues/14623
Differential Revision: https://reviews.llvm.org/D106728
These symbols are somewhat interesting in that they create non-existing
segments, which as far as I know is the only way to create segments
that don't contain any sections.
Final part of part of PR50760. Like D106629, but for segments instead
of sections. I'm not aware of anything that needs this in practice.
Differential Revision: https://reviews.llvm.org/D106767
Fixes the output segment name if both -rename_section and
-rename_segment are used and the post-section-rename segment
name is the same as the pre-segment-rename segment name to
match ld64's behavior.
The motivation is that segment$start$ can create section-less segments,
and this makes a corner case in the interaction between segment$start and
-rename_segment in the upcoming segment$start patch.
Differential Revision: https://reviews.llvm.org/D106766
__heap_base was not aligned. In practice, it will often be aligned
simply because it follows the stack, but when the stack is placed at the
beginning (with the --stack-first option), the __heap_base might be
unaligned. It could even be byte-aligned.
At least wasi-libc appears to expect that __heap_base is aligned:
659ff41456/dlmalloc/src/malloc.c (L5224)
While WebAssembly itself does not appear to require any alignment for
memory accesses, it is sometimes required when sharing a pointer
externally. For example, WASI might expect alignment up to 8:
https://github.com/WebAssembly/WASI/blob/main/phases/snapshot/docs.md#-timestamp-u64
This issue got introduced with the addition of the --stack-first flag:
https://reviews.llvm.org/D46141
I suspect the lack of alignment wasn't intentional here.
Differential Revision: https://reviews.llvm.org/D106499
With this, libclang_rt.profile_osx.a can be linked, that is coverage
and PGO-instrumented builds should now work with lld.
section$start and section$end symbols can create non-existing sections.
They're also undefined symbols that are only magic if there isn't a
regular symbol with their name, which means the need to be handled
in treatUndefined() instead of just looping over all existing
sections and adding start and end symbols like the ELF port does.
To represent the actual symbols, this uses absolute symbols that
get their value updated once an output section is layed out.
segment$start and segment$end are still missing for now, but they produce a
nicer error message after this patch.
Main part of PR50760.
Differential Revision: https://reviews.llvm.org/D106629
We lacked a test for bitcode symbol precedence. We assumed that
they followed the same rules as their regular symbol counterparts, but
never had a test to verify that we were matching ld64's behavior. It
turns out that we were largely correct, though we deviate from ld64 when
there are bitcode and non-bitcode symbols of the same name. The test
added in this diff both verifies our behavior and documents the
differences.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D106596
We had a comment that claimed that defined symbols had priority
over common symbols if they occurred in the same archive. In fact, they
appear to have equal precedence. Our implementation already does this,
so I'm just updating the test comment. Also added a few other test
comments along the way for readability.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D106595
In particular, relocations to absolute symbols or literal sections can
be handled in equalsConstant(), since their output addresses will not
change across each iteration of ICF. Offsets and addends can also be
dealt with entirely in equalsConstant(), making the code somewhat easier
to reason about. Only ConcatInputSections need to be handled in
equalsVariable().
LLD-ELF's implementation takes a similar approach.
Although this should make ICF do less work, in practice it seems like
there is no stat sig difference in time taken when linking
chromium_framework.
This refactor is motivated by an upcoming diff which improves ICF's handling of
addends.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D106212
I found icf.s a bit hard to work with as it was not possible to
extend any of the functions `_a` ... `_k` to test new relocation /
referent types without modifying every single one of them. Additionally,
their one-letter names were not descriptive (though the comments
helped).
I've renamed all the functions to reflect the feature they are testing,
and shrunk them so that they contain just enough to test that one
feature.
I've also added tests for non-zero addends (via the
`_abs1a_ref_with_addend` and `_defined_ref_with_addend_1` functions).
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D106211
segment$start$/segment$end$ symbols allow creating segments without
sections, so getting the segment address off the first section
won't work there. Storing the address on the segment is arguably a
bit simpler too.
No behavior change, part of PR50760.
Differential Revision: https://reviews.llvm.org/D106665
Absolute symbols have a nullptr isec. buildInputSectionPriorities()
would defer isec, causing crashes. Ordering absolute symbols doesn't
make sense, so just ignore them. This seems to match ld64.
Differential Revision: https://reviews.llvm.org/D106628
Ported from COFF/ELF; test is adapted from
test/COFF/thinlto-archivecollision.ll
LTO expects every bitcode file to have a unique name. If given multiple bitcode
files with the same name, it errors with "Expected at most one ThinLTO module
per bitcode file".
This change incorporates the archive name, to disambiguate members with the
same name in different archives and the offset in archive to disambiguate
members with the same name in the same archive.
Differential Revision: https://reviews.llvm.org/D106179
This generalizes D70146 (SHT_NOTE) to more reserved sections and makes our rules
more consistent. Now SHF_GROUP is more similar to SHF_LINK_ORDER.
For SHT_INIT_ARRAY/SHT_FINI_ARRAY, the rule will be closer to PE/COFF link.exe.
Previously sanitizers use llvm.global_ctors to make module_ctor a GC
root, which is considered an abuse.
https://groups.google.com/g/generic-abi/c/TpleUEkNoQI
We can squeak through on compatibility issues because compilers otherwise don't
use SHF_GROUP special sections.
In ld64, `-U section$start$FOO$bar` handles `section$start$FOO$bar`
as a regular `section$start` symbol, that is section$start processing
happens before -U processing.
Likely, nobody uses that in practice so it doesn't seem very important
to be compatible with this, but it also moves the -U handling code next
to the `-undefined dynamic_lookup` handling code, which is nice because
they do the same thing. And, in fact, this did identify a bug in a corner
case in the intersection of `-undefined dynamic_lookup` and dead-stripping
(fix for that in D106565).
Vaguely related to PR50760.
No interesting behavior change.
Differential Revision: https://reviews.llvm.org/D106566
We lost the `used` bit on the Undefined when we replaced it with a DylibSymbol
in treatUndefined().
Differential Revision: https://reviews.llvm.org/D106565
treatUndefinedSymbol() was previously called before gatherInputSections()
and markLive() for these special symbols, but after them for normal
undefineds.
For PR50760, treatUndefinedSymbol() will have to potentially create
sections, so it's good to move treatUndefinedSymbol() for special
undefineds later, so that it can assume that gatherInputSections()
and markLive() has already been called always.
No intended behavior change, but part of PR50760 (and covered in
tests in the patch for the full feature).
Differential Revision: https://reviews.llvm.org/D106552
The guid of a local linkage variable has the module path encoded, so the
order between a local linkage variable and a non-local linkage variable
isn't guaranteed.
Implement pass 3 of bind opcodes from ld64 (which supports both 32-bit and 64-bit).
Pass 3 implementation condenses BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB opcode
to BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED. This change is already behind an
O2 flag so it shouldn't impact current performance. I verified ld64's output with x86_64 LLD
and they were both emitting the same optimized bind opcodes (although in a slightly different
order). Tested with arm64_32 LLD and compared that with x86 LLD that the order of the bind
opcodes are the same (offset values are different which should be expected).
Reviewed By: int3, #lld-macho, MaskRay
Differential Revision: https://reviews.llvm.org/D106128
In PGO, a C++ external linkage function `foo` has a private counter
`__profc_foo` and a private `__profd_foo` in a `comdat nodeduplicate`.
A `__attribute__((weak))` function `foo` has a weak hidden counter `__profc_foo`
and a private `__profd_foo` in a `comdat nodeduplicate`.
In `ld.lld a.o b.o`, say a.o defines an external linkage `foo` and b.o
defines a weak `foo`. Currently we treat `comdat nodeduplicate` as `comdat any`,
ld.lld will incorrectly consider `b.o:__profc_foo` non-prevailing. In the worst
case when `b.o:__profd_foo` is retained and `b.o:__profc_foo` isn't, there will
be dangling reference causing an `undefined hidden symbol` error.
Add SelectionKind to `Comdat` in IRSymtab and let linkers ignore nodeduplicate comdat.
Differential Revision: https://reviews.llvm.org/D106228
This avoids duplication and simplifies the code in several places
without increasing the size of the symbol union (at least not
above the assert'd limit of 120 bytes).
Originally commit: 9b965b37c7
Reverted in: 16aac493e5.
Differential Revision: https://reviews.llvm.org/D106026
This reverts commit 321b2bef09.
`for (BindIR *p = &opcodes[0]; p->opcode != BIND_OPCODE_DONE; ++p) {` has a heap-buffer-overflow with test/MachO/bind-opcodes.
Implement pass 3 of bind opcodes from ld64 (which supports both 32-bit and 64-bit).
Pass 3 implementation condenses BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB opcode
to BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED. This change is already behind an
O2 flag so it shouldn't impact current performance. I verified ld64's output with x86_64 LLD
and they were both emitting the same optimized bind opcodes (although in a slightly different
order). Tested with arm64_32 LLD and compared that with x86 LLD that the order of the bind
opcodes are the same (offset values are different which should be expected).
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D106128
This avoids duplication and simplifies the code in several places
without increasing the size of the symbol union (at least not
above the assert'd limit of 120 bytes).
Differential Revision: https://reviews.llvm.org/D106026
Debug info sections need R_WASM_FUNCTION_OFFSET_I32 relocs (with FK_Data_4 fixup
kinds) to refer to functions (instead of R_WASM_TABLE_INDEX as is used in data
sections). Usually this is done in a convoluted way, with unnamed temp data
symbols which target the start of the function, in which case
WasmObjectWriter::recordRelocation converts it to use the section symbol
instead. However in some cases the function can actually be undefined; in this
case the dwarf generator uses the function symbol (a named undefined function
symbol) instead. In that case the section-symbol transform doesn't work and we
need to generate the correct reloc type a different way. In this change
WebAssemblyWasmObjectWriter::getRelocType takes the fixup section type into
account to choose the correct reloc type.
Fixes PR50408
Differential Revision: https://reviews.llvm.org/D103557
ICF previously operated only within a given OutputSection. We would
merge all CFStrings first, then merge all regular code sections in a
second phase. This worked fine since CFStrings would never reference
regular `__text` sections. However, I would like to expand ICF to merge
functions that reference unwind info. Unwind info references the LSDA
section, which can in turn reference the `__text` section, so we cannot
perform ICF in phases.
In order to have ICF operate on InputSections spanning multiple
OutputSections, we need a way to distinguish InputSections that are
destined for different OutputSections, so that we don't fold across
section boundaries. We achieve this by creating OutputSections early,
and setting `InputSection::parent` to point to them. This is what
LLD-ELF does. (This change should also make it easier to implement the
`section$start$` symbols.)
This diff also folds InputSections w/o checking their flags, which I
think is the right behavior -- if they are destined for the same
OutputSection, they will have the same flags in the output (even if
their input flags differ). I.e. the `parent` pointer check subsumes the
`flags` check. In practice this has nearly no effect (ICF did not become
any more effective on chromium_framework).
I've also updated ICF.cpp's block comment to better reflect its current
status.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D105641
In D105866, we used an intermediate container to store a list of opcodes. Here,
we use that data structure to help us perform optimization passes that would allow
a more efficient encoding of bind opcodes. Currently, the functionality mirrors the
optimization pass {1,2} done in ld64 for bind opcodes under optimization gate
to prevent slight regressions.
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D105867
We want to incorporate some of the optimization passes in bind opcodes from ld64.
This revision makes no functional changes but to start storing opcodes in intermediate
containers in preparation for implementing the optimization passes in a follow-up revision.
Differential Revision: https://reviews.llvm.org/D105866
`clang -fuse-ld=lld -static-pie -fpie` produced executable
currently crashes and this patch makes it work.
See https://sourceware.org/bugzilla/show_bug.cgi?id=27164
and https://sourceware.org/pipermail/libc-alpha/2021-July/128810.html
While it seems unreasonable to keep csu/libc-start.c ARCH_APPLY_IREL unclear in
static-pie mode and have an unneeded diff -u =(ld.bfd --verbose) =(ld.bfd -pie
--verbose) difference, glibc folks don't want to fix their code.
I feel sad about that but this patch can remove an iffy condition for lld/ELF
as well: `needsInterpSection()`.
This adds support for the lld-only `--thinlto-cache-policy` option, as well as
implementations for ld64's `-cache_path_lto`, `-prune_interval_lto`,
`-prune_after_lto`, and `-max_relative_cache_size_lto`.
Test is adapted from lld/test/ELF/lto/cache.ll
Differential Revision: https://reviews.llvm.org/D105922
The ELF specification says "The link editor honors the common definition and
ignores the weak ones." GNU ld and our Symbol::compare follow this, but the
--fortran-common code (D86142) made a mistake on the precedence.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51082
Reviewed By: peter.smith, sfertile
Differential Revision: https://reviews.llvm.org/D105945
This is a follow up to https://reviews.llvm.org/D104080, and ca3bdb57fa (diff-e64a48fabe31db213a631fdc5f2acb51bdddf3f16a8fb2928784f4c579229585). The implementation of call graph profile was changed from a black box section to relocation approach. This was done to be compatible with post processing tools like strip/objcopy, and llvm equivalent. When they are invoked on object file before the final linking step with this new approach the symbol indices correctness is preserved.
The GNU binutils tools change the REL section to RELA section, unlike llvm tools. For example when strip -S is run on the ELF object files, as an intermediate step before linking. To preserve compatibility this patch extends implementation in LLD and ELFDumper to support both REL and RELA sections for call graph profile.
Reviewed By: MaskRay, jhenderson
Differential Revision: https://reviews.llvm.org/D105217
This patch is a followup patch to https://reviews.llvm.org/D105760 which adds this relocation. This handles the relocation in lld.
The s_branch family of instruction does the following:
PC = PC + signext(simm * 4) + 4
so we we do the opposite on the target address before writing it in the instruction stream.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D105761
* Adjust strsize so llvm-objdump doesn't complain about it extending
past the end of file
* Remove symbol that was referencing a deleted section
* Adjust n_sect of the remaining `_main` symbol to point at the right
section
The mappings we were using had a small number of keys, so a vector is
probably better. This allows us to remove the last usage of std::map in
our codebase.
I also used `removeSimulator` to simplify the code a bit further.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D105786
lld currently only references dyld_stub_binder when it's needed.
ld64 always references it when libSystem is linked.
Match ld64.
The (somewhat lame) motivation is that `nm` on a binary without any
export writes a "no symbols" warning to stderr, and this change makes
it so that every binary in practice has at least a reference to
dyld_stub_binder, which suppresses that.
Every "real" output file will reference dyld_stub_binder, so most
of the time this shouldn't make much of a difference. And if you
really don't want to have this reference for whatever reason, you
can stop passing -lSystem, like you have to for ld64 anyways.
(After linking any dylib, we dump the exported list of symbols to
a txt file with `nm` and only relink downstream deps if that txt
file changes. A nicer fix is to make lld optionally write .tbd files
with the public interface of a linked dylib and use that instead,
but for now the txt files are what we do.)
Differential Revision: https://reviews.llvm.org/D105782
This is for aesthetic reasons, I'm not aware of anything that needs
this in practice. It does have a few effects:
- `-undefined dynamic_lookup` now has an effect for dyld_stub_binder.
This matches ld64.
- `-U dyld_stub_binder` now works like you'd expect (it doesn't work in ld64).
- The error message for a missing dyld_stub_binder symbol now looks like
other undefined reference symbols, it changes from
symbol dyld_stub_binder not found (normally in libSystem.dylib). Needed to perform lazy binding.
to
error: undefined symbol: dyld_stub_binder
>>> referenced by lazy binding (normally in libSystem.dylib)
Also add test coverage for that error message.
But in practice, this should have no interesting effects since everything links
in dyld_stub_binder via libSystem anyways.
Differential Revision: https://reviews.llvm.org/D105781
Add a bit more detail to the comments, and check that the final binary
does indeed have a `__unwind_info` section (D105557 previosly regressed
this).
Also rename the test to emphasize that we are testing relocations
compact unwind, not relocations in general.
Two changess:
- Drop assertions that all symbols are in GOT
- Set allEntriesAreOmitted correctly
Related bug: 50812
Differential Revision: https://reviews.llvm.org/D105364
This to protect against non-sensical instruction sequences being assembled,
which would either cause asserts/crashes further down, or a Wasm module being output that doesn't validate.
Unlike a validator, this type checker is able to give type-errors as part of the parsing process, which makes the assembler much friendlier to be used by humans writing manual input.
Because the MC system is single pass (instructions aren't even stored in MC format, they are directly output) the type checker has to be single pass as well, which means that from now on .globaltype and .functype decls must come before their use. An extra pass is added to Codegen to collect information for this purpose, since AsmPrinter is normally single pass / streaming as well, and would otherwise generate this information on the fly.
A `-no-type-check` flag was added to llvm-mc (and any other tools that take asm input) that surpresses type errors, as a quick escape hatch for tests that were not intended to be type correct.
This is a first version of the type checker that ignores control flow, i.e. it checks that types are correct along the linear path, but not the branch path. This will still catch most errors. Branch checking could be added in the future.
Differential Revision: https://reviews.llvm.org/D104945
Since D100490 this case is diagnosed for -z rel. This commit implements
R_AARCH64_TLSDESC cases for AArch64::getImplicitAddend() and
AArch64::relocate(). However, there are probably further relocation types
that need to be handled for full support of -z rel.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47009
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D100544
I found this missing case with the new --check-dynamic-relocation flag
while running the lld tests with --apply-dynamic-relocs enabled by default.
This is the same as D101452 just for RISC-V
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101454
I found this missing case with the new --check-dynamic-relocation flag
while running the lld tests with --apply-dynamic-relocs enabled by default.
This also fixes a broken CHECK in lld/test/ELF/x86-64-gotpc-relax.s:
The test wasn't using CHECK-NEXT, so it was passing despite the output
actually containing relocations. I am not sure when this changed, but I
think this behaviour is correct.
Found with D101450 + enabling --apply-dynamic-relocs by default.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101452
There used to be many cases where addends for Elf_Rel were not emitted in
the final object file (mostly when building for MIPS64 since the input .o
files use RELA but the output uses REL). These cases have been fixed since,
but this patch adds a check to ensure that the written values are correct.
It is based on a previous patch that I added to the CHERI fork of LLD since
we were using MIPS64 as a baseline. The work has now almost entirely
shifted to RISC-V and Arm Morello (which use Elf_Rela), but I thought
it would be useful to upstream our local changes anyway.
This patch adds a (hidden) command line flag --check-dynamic-relocations
that can be used to enable these checks. It is also on by default in
assertions builds for targets that handle all dynamic relocations kinds
that LLD can emit in Target::getImplicitAddend(). Currently this is
enabled for ARM, MIPS, and I386.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D101450
This patch changes the DynamicReloc class to store an enum instead
of the overloaded useSymVA member to make it easier to understand
and fix incorrect addends being written in some corner cases. The
change is motivated by a follow-up review that checks the value of
implicit Elf_Rel addends written to the output file.
This patch fixes an incorrect output when using `-z rela` for i386 files
with R_386_GOT32 relocations (not that this really matters since it's an
unsupported configuration).
Storing the relocation expression kind also addresses an incorrect addend
FIXME in ppc64-abs64-dyn.s introduced in D63383.
DynamicReloc now also has a special case for the MIPS TLS relocations
(DynamicReloc::AgainstSymbolWithTargetVA) since the
R_MIPS_TLS_TPREL{32/64} the symbol VA to the GOT for preemptible
symbols. I'm not sure if the symbol value actually should be written
for R_MIPS_TLS_TPREL32, but this patch does not attempt to change
that behaviour.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D100490
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
Change "dyn_cast" to "isa" to get rid of the unused
variable "bitcodeFile".
gcc warned with
lld/MachO/Driver.cpp:531:17: warning: unused variable 'bitcodeFile' [-Wunused-variable]
531 | if (auto *bitcodeFile = dyn_cast<BitcodeFile>(file)) {
| ^~~~~~~~~~~
When memory is declared in the Wasm module, we rely on the implicit zero
initialization behavior and do not explicitly output .bss sections. The means
that they do not have associated `outputSec` entries, which was causing
segfaults in the mapfile support. Fix the issue by guarding against null
`outputSec` and falling back to using a zero offset.
Differential Revision: https://reviews.llvm.org/D102951
LLD on 32-bit Windows would frequently fail on large projects with
an exception "thread constructor failed: Exec format error". The stack
trace pointed to this usage of std::async, and looking at the
implementation in libc++ it seems using std::async with
std::launch::async results in the immediate creation of a new thread
for every call. This could result in a potentially unbounded number
of threads, depending on the number of input files. This seems to
be hitting some limit in 32-bit Windows host.
I took the easy route, and only use threads on 64-bit Windows, not all
Windows as before. I was thinking a more proper solution might
involve using a thread pool rather than blindly spawning any number
of new threads, but that may have other unforeseen consequences.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D105506
If the input has compact unwind info but all of it is removed
after dead stripping, we would crash. Now we don't write any
__unwind_info section at all, like ld64.
This is a bit awkward to implement because we only know the final
state of unwind info after UnwindInfoSectionImpl<Ptr>::finalize(),
which is called after sections are added. So add a small amount of
bookkeeping to relocateCompactUnwind() instead (which runs earlier)
so that we can predict what finalize() will do before it runs.
Fixes PR51010.
Differential Revision: https://reviews.llvm.org/D105557
This implements the part of -export_dynamic that adds external
symbols as dead strip roots even for executables.
It does not yet implement the effect -export_dynamic has for LTO.
I tried just replacing `config->outputType != MH_EXECUTE` with
`(config->outputType != MH_EXECUTE || config->exportDynamic)` in
LTO.cpp, but then local symbols make it into the symbol table too,
which is too much (and also doesn't match ld64). So punt on this
for now until I understand it better.
(D91583 may or may not be related too).
Differential Revision: https://reviews.llvm.org/D105482
This is the other flag clang passes when calling clang with two -arch
flags (which means with this, `clang -arch x86_64 -arch arm64 -fuse-ld=lld ...`
now no longer prints any warnings \o/). Since clang calls the linker several
times in that setup, it's not clear to the user from which invocation the
errors are. The flag's help text is
Specifies that the linker should augment error and warning messages
with the architecture name.
In ld64, the only effect of the flag is that undefined symbols are prefaced
with
Undefined symbols for architecture x86_64:
instead of the usual "Undefined symbols:". So for now, let's add this
only to undefined symbol errors too. That's probably the most common
linker diagnostic.
Another idea would be to prefix errors and warnings with "ld64.lld(x86_64):"
instead of the usual "ld64.lld:", but I'm not sure if people would
misunderstand that as a comment about the arch of ld itself.
But open to suggestions on what effect this flag should have :) And we
don't have to get it perfect now, we can iterate on it.
Differential Revision: https://reviews.llvm.org/D105450
This is one of two flags clang passes to the linker when giving calling
clang with multiple -arch flags.
I think it'd make sense to also use finalOutput instead of outputFile
in CodeSignatureSection() and when replacing @executable_path, but
ld64 doesn't do that, so I'll at least put those in separate commits.
Differential Revision: https://reviews.llvm.org/D105449
I think this is an old way for doing what is done with
-reexport_library these days, but it's e.g. still used in libunwind's
build (the opensource.apple.com one, not the llvm one).
Differential Revision: https://reviews.llvm.org/D105448
Size-wise, BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the most
expensive opcode, since it comes with an associated symbol string. We
were previously emitting it once per binding, instead of once per
symbol. This diff groups all bindings for a given symbol together and
ensures we only emit one such opcode per symbol. This matches ld64's
behavior.
While this is a relatively small win on chromium_framework (-72KiB), for
programs that have more dynamic bindings, the difference can be quite
large.
This change is perf-neutral when linking chromium_framework.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D105075
clang and gcc both seem to emit relocations in reverse order of
address. That means we can match relocations to their containing
subsections in `O(relocs + subsections)` rather than the `O(relocs *
log(subsections))` that our previous binary search implementation
required.
Unfortunately, `ld -r` can still emit unsorted relocations, so we have a
fallback code path for that (less common) case.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.04 4.11 4.075 4.0775 0.018027756
+ 20 3.95 4.02 3.98 3.985 0.020900768
Difference at 95.0% confidence
-0.0925 +/- 0.0124919
-2.26855% +/- 0.306361%
(Student's t, pooled s = 0.0195172)
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D105410
Two bugs:
1. This tries to take the address of the last symbol plus the length
of the last symbol. However, the sorted vector is cuPtrVector,
not cuVector. Also, cuPtrVector has tombstone values removed
and cuVector doesn't. If there was a stripped value at the end,
the "last" element's value was UINT64_MAX, which meant the
sentinel value was one less than the length of that "last"
dead symbol.
2. We have to subtract in.header->addr. For 64-bit binaries that's
(1 << 32) and functionAddress is 32-bit so this is a no-op, but
for 32-bit binaries the sentinel's value was too large.
I believe this has no effect in practice since the first-level
binary search code in libunwind (in UnwindCursor.hpp) does:
uint32_t low = 0;
uint32_t high = sectionHeader.indexCount();
uint32_t last = high - 1;
while (low < high) {
uint32_t mid = (low + high) / 2;
if ((mid == last) ||
(topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
low = mid;
break;
} else {
low = mid + 1;
}
So the address of the last entry in the first-level table isn't really
checked -- except for the very end, but the check against `last` means
we just run the loop once more than necessary. But it makes `unwinddump` output
look less confusing, and it's what it looks was the intention here.
(No test since I can't think of a way to make FileCheck check that one
number is larger than another.)
Differential Revision: https://reviews.llvm.org/D105404
If linking directly against a DLL without an import library, the
DLL export symbols might not contain stdcall decorations.
If we have an undefined symbol with decoration, and we happen to have
a matching undecorated symbol (which either is lazy and can be loaded,
or already defined), then alias it against that instead.
This matches what's done in reverse, when we have a def file
declaring to export a symbol without decoration, but we only have
a defined decorated symbol. In that case we do a fuzzy match
(SymbolTable::findMangle). This case is more straightforward; if we
have a decorated undefined symbol, just strip the decoration and look
for the corresponding undecorated symbol name.
Add warnings and options for either silencing the warning or disabling
the whole feature, corresponding to how ld.bfd does it.
(This feature works for any symbol decoration mismatch, not only when
linking against a DLL directly; ld.bfd also tolerates it anywhere,
and also fixes up mismatches in the other direction, like
SymbolTable::findMangle, for any symbol, not only exports. But in
practice, at least for lld, it would primarily end up used for linking
against DLLs.)
Differential Revision: https://reviews.llvm.org/D104532
As the COFF linker is capable of linking directly against a DLL now
(after D104530, as long as it is running in mingw mode), don't error
out here but successfully load libraries specified with "-l" from DLLs
if that's what ld.bfd would have matched.
Differential Revision: https://reviews.llvm.org/D104531
GNU ld.bfd supports linking directly against DLLs without using an
import library, and some projects have picked up on this habit.
(There's no one single unsurmountable issue with using import
libraries, but this is a regularly surfacing missing feature.)
As long as one is linking by name (instead of by ordinal), the DLL
export table contains most of the information needed. (One can
inspect what section a symbol points at, to see if it's a function
or data symbol. The practical implementation of this loops over all
sections for each symbol, but as long as they're not very many, that
should hopefully be tolerable performance wise.)
One exception where the information in the DLL isn't entirely enough
is on i386 with stdcall functions; depending on how they're done,
the exported function name can be a plain undecorated name, while
the import library would contain the full decorated symbol name. This
issue is addressed separately in a different patch.
This is implemented mimicing the structure of a regular import library,
with one InputFile corresponding to the static archive that just adds
lazy symbols, which then are fetched when they are needed. When such
a symbol is fetched, we synthesize a coff_import_header structure
in memory and create a regular ImportFile out of it.
The implementation could be even smaller by just creating ImportFiles
for every symbol available immediately, but that would have the
drawback of actually ending up importing all symbols unless running
with GC enabled (and mingw mode defaults to having it disabled for
historical reasons).
Differential Revision: https://reviews.llvm.org/D104530
We have been creating many ConcatInputSections with identical values due
to .subsections_via_symbols. This diff factors out the identical values
into a Shared struct, to reduce memory consumption and make copying
cheaper.
I also changed `callSiteCount` from a uint32_t to a 31-bit field to save an
extra word.
All in all, this takes InputSection from 120 to 72 bytes (and
ConcatInputSection from 160 to 112 bytes), i.e. 30% size reduction in
ConcatInputSection.
Numbers for linking chromium_framework on my 3.2 GHz 16-Core Intel Xeon W:
N Min Max Median Avg Stddev
x 20 4.14 4.24 4.18 4.183 0.027548999
+ 20 4.04 4.11 4.075 4.0775 0.018027756
Difference at 95.0% confidence
-0.1055 +/- 0.0149005
-2.52211% +/- 0.356215%
(Student's t, pooled s = 0.0232803)
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D105305
`__cfstring` is a special literal section, so instead of breaking it up
at symbol boundaries, we break it up at fixed-width boundaries (since
each literal is the same size). Symbols can only occur at one of those
boundaries, so this is strictly more powerful than
`.subsections_via_symbols`.
With that in place, we then run the section through ICF.
This change is about perf-neutral when linking chromium_framework.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D105045
This is a pretty big refactoring diff, so here are the motivations:
Previously, ICF ran after scanRelocations(), where we emitting
bind/rebase opcodes etc. So we had a bunch of redundant leftovers after
ICF. Having ICF run before Writer seems like a better design, and is
what LLD-ELF does, so this diff refactors it accordingly.
However, ICF had two dependencies on things occurring in Writer: 1) it
needs literals to be deduplicated beforehand and 2) it needs to know
which functions have unwind info, which was being handled by
`UnwindInfoSection::prepareRelocations()`.
In order to do literal deduplication earlier, we need to add literal
input sections to their corresponding output sections. So instead of
putting all input sections into the big `inputSections` vector, and then
filtering them by type later on, I've changed things so that literal
sections get added directly to their output sections during the 'gather'
phase. Likewise for compact unwind sections -- they get added directly
to the UnwindInfoSection now. This latter change is not strictly
necessary, but makes it easier for ICF to determine which functions have
unwind info.
Adding literal sections directly to their output sections means that we
can no longer determine `inputOrder` from iterating over
`inputSections`. Instead, we store that order explicitly on
InputSection. Bloating the size of InputSection for this purpose would
be unfortunate -- but LLD-ELF has already solved this problem: it reuses
`outSecOff` to store this order value.
One downside of this refactor is that we now make an additional pass
over the unwind info relocations to figure out which functions have
unwind info, since want to know that before `processRelocations()`. I've
made sure to run that extra loop only if ICF is enabled, so there should
be no overhead in non-optimizing runs of the linker.
The upside of all this is that the `inputSections` vector now contains
only ConcatInputSections that are destined for ConcatOutputSections, so
we can clean up a bunch of code that just existed to filter out other
elements from that vector.
I will test for the lack of redundant binds/rebases in the upcoming
cfstring deduplication diff. While binds/rebases can also happen in the
regular `.text` section, they're more common in `.data` sections, so it
seems more natural to test it that way.
This change is perf-neutral when linking chromium_framework.
Reviewed By: oontvoo
Differential Revision: https://reviews.llvm.org/D105044
Everything (including test) modified from ELF/COFF. Using the same syntax
(--lto-O3, etc) as ELF.
Differential Revision: https://reviews.llvm.org/D105223
Previously, we only applied the renames to
ConcatOutputSections.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D105079
For
```
SECTIONS {
text.0 : {}
text.1 : {}
text.2 : {}
} INSERT AFTER .data;
```
the current order is `.data text.2 text.1 text.0`. It makes more sense to
preserve the specified order and thus improve compatibility with GNU ld.
For
```
SECTIONS { text.0 : {} } INSERT AFTER .data;
SECTIONS { text.3 : {} } INSERT AFTER .data;
```
GNU ld somehow collects sections with `INSERT AFTER .data` together (IMO
inconsistent) but I think it makes more sense to execute the commands in order
and get `.data text.3 text.0` instead.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D105158
See the comment for my understanding of -no-pie and -shared expectation.
-no-pie has freedom on choices. We choose dynamic relocations to be consistent
with the handling of GOT-generating relocations.
Note: GNU ld has arch-varying behaviors and its x86 -pie has a very
complex rule:
if there is at least one GOT-generating or PLT-generating relocation and
-z dynamic-undefined-weak (enabled by default) is in effect, generate a
dynamic relocation.
We don't emulate its rule.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D105164
A couple of filecheck patterns had not been hooked up with
the patterns suffering from some drift. As this test is old
and llvm-objdump has improved a lot, take this opportunity to
hide the instruction encoding. I've also taken out a lot of
the explanatory comments that llvm-objdump improvements make
redundant, as these comments oftern don't get updated when addresses
change.
Differential Revision: https://reviews.llvm.org/D104907
There are a couple of problems with the code to patch
unrelocated BLX instructions:
1. The calculation of the PC needs to take into account
the alignment of the instruction. The Thumb BLX
uses alignDown(PC, 4) for the source address.
2. The calculation of the PC bias is hard-coded to 4
which works for Thumb, but when there is a BLX the
branch will be in Arm state so it needs an 8 byte
PC bias.
No asssembler generates an unrelocated BLX instruction
so these problems do not affect real world programs.
However we should still fix them.
Differential Revision: https://reviews.llvm.org/D104905
SymtabSection::emitStabs() writes the symbol table in the order
of externalSymbols, which has the order of symtab->getSymbols(),
which is just the order symbols are added to the symbol table.
In practice, symbols in the symbol files of input .o files are
sorted, but since that's not guaranteed we sort them in
ObjFile::parseSymbols(). To make sure several symbols with the same
address keep the order they're in the input file, we have to use
stable_sort().
In practice, std::sort() on already-sorted inputs won't change the order
of just adjacent elements, and while in theory std::sort() could use a
random pivot, in practice the code should be deterministic as it was
previously too.
But now lld/test/MachO/stabs.s passes with LLVM_ENABLE_EXPENSIVE_CHECKS=ON
(the last test that was failing with that set).
Fixes a regression from D99972.
While here, remove an empty section in stabs.s and move
.subsections_via_symbols to the end where it usually is (this part no
behavior change).
Differential Revision: https://reviews.llvm.org/D105071
Fixes PR50637.
Downstream bug: https://crbug.com/1218958
Currently, we split __cstring along symbol boundaries with .subsections_via_symbols
when not deduplicating, and along null bytes when deduplicating. This change splits
along null bytes unconditionally, and preserves original alignment in the non-
deduplicated case.
Removing subsections-section-relocs.s because with this change, __cstring
is never reordered based on the order file.
Differential Revision: https://reviews.llvm.org/D104919
The two different thread_local_regular sections (__thread_data and
more_thread_data) had nondeterminstic ordering for two reasons:
1. https://reviews.llvm.org/D102972 changed concatOutputSections
from MapVector to DenseMap, so when we iterate it to make
output segments, we would add the two sections to the __DATA
output segment in nondeterministic order.
2. The same change also moved the two stable_sort()s for segments
and sections to sort(). Since sections with assigned priority
(such as TLV data) have the same priority for all sections,
this is incorrect -- we must use stable_sort() so that the
initial (input-order-based) order remains.
As a side effect, we now (deterministically) put the __common
section in front of __bss (while previously we happened to
put it after it). (__common and __bss are both zerofill so
both have order INT_MAX, but common symbols are added to
inputSections before normal sections are collected.)
Makes lld/test/MachO/tlv.s and lld/test/MachO/tlv-dylib.s pass with
LLVM_ENABLE_EXPENSIVE_CHECKS=ON.
Differential Revision: https://reviews.llvm.org/D105054
Make sure we don't wrongly fold two sections that refer to
symbols with the same value if they are not both absolute /
non-absolute.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D104876
Literal sections can be deduplicated before running ICF. That makes it
easy to compare them during ICF: we can tell if two literals are
constant-equal by comparing their offsets in their OutputSection.
LLD-ELF takes a similar approach.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D104671
This test has always failed on 32 bit armv8 bots:
https://lab.llvm.org/buildbot/#/builders/178/builds/42
Due to the output order of some symbols changing.
I don't think this is an Arm specific issue so disabling
on 32 bit while it's investigated.
The patch reuses the common code to print memory operand addresses as
instruction comments. This helps to align the comments and enables using
target-specific comment markers when `evaluateMemoryOperandAddress()` is
implemented for them.
Differential Revision: https://reviews.llvm.org/D104861
libunwind uses unwind info to find the function address belonging
to the current instruction pointer. libunwind/src/CompactUnwinder.hpp's
step functions read functionStart for UNWIND_X86_64_MODE_STACK_IND
(and for nothing else), so these encodings need a dedicated entry
per function, so that the runtime can get the stacksize off the
`subq` instrunction in the function's prologue.
This matches ld64.
(CompactUnwinder.hpp from https://opensource.apple.com/source/libunwind/
also reads functionStart in a few more cases if `SUPPORT_OLD_BINARIES` is set,
but it defaults to 0, and ld64 seems to not worry about these additional
cases.)
Related upstream bug: https://crbug.com/1220175
Differential Revision: https://reviews.llvm.org/D104978
Modify the D13209 logic: for a script inside the sysroot, if an absolute path
does not exist, report an error instead of falling back to the path without the
sysroot prefix.
This matches GNU ld, which makes sense to me: we don't want to find an arbitrary
file in the host.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D104894
Commit 728cc0075e made comdat symbols
from LTO objects be treated as any regular comdat symbol. This works
great for symbols that actually are IMAGE_COMDAT_SELECT_ANY, but
if the symbols have a less trivial selection type that require comparing
either the section chunk size or contents, we can't check that before
actually doing the LTO compilation.
Therefore bring back one aspect of handling from before; that comdat
resolution with a leader from an LTO symbol is essentially skipped,
like it was before 728cc0075e.
Differential Revision: https://reviews.llvm.org/D104605
... even on targets preferring RELA. The section is only consumed by ld.lld
which can handle REL.
Follow-up to D104080 as I explained in the review. There are two advantages:
* The D104080 code only handles RELA, so arm/i386/mips32 etc may warn for -fprofile-use=/-fprofile-sample-use= usage.
* Decrease object file size for RELA targets
While here, change the relocation to relocate weights, instead of 0,1,2,3,..
I failed to catch the issue during review.
`icfEqClass` only makes sense on ConcatInputSections since (in contrast
to literal sections) they are deduplicated as an atomic unit.
Similarly, `hasPersonality` and `replacement` don't make sense on
literal sections.
This mirrors LLD-ELF, which stores `icfEqClass` only on non-mergeable
sections.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D104670
We previously did this only for x86_64, but it turns out that
arm64 needs this too -- see PR50791.
Ultimately this is a hack, and we should avoid over-aligning strings
that don't need it. I'm just having a hard time figuring out how ld64 is
determining the right alignment.
No new test for this since we were already testing this behavior for
x86_64, and extending it to arm64 seems too trivial.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D104835
Currently when .llvm.call-graph-profile is created by llvm it explicitly encodes the symbol indices. This section is basically a black box for post processing tools. For example, if we run strip -s on the object files the symbol table changes, but indices in that section do not. In non-visible behavior indices point to wrong symbols. The visible behavior indices point outside of Symbol table: "invalid symbol index".
This patch changes the format by using R_*_NONE relocations to indicate the from/to symbols. The Frequency (Weight) will still be in the .llvm.call-graph-profile, but symbol information will be in relocation section. In LLD information from both sections is used to reconstruct call graph profile. Relocations themselves will never be applied.
With this approach post processing tools that handle relocations correctly work for this section also. Tools can add/remove symbols and as long as they handle relocation sections with this approach information stays correct.
Doing a quick experiment with clang-13.
The size went up from 107KB to 322KB, aggregate of all the input sections. Size of clang-13 binary is ~118MB. For users of -fprofile-use/-fprofile-sample-use the size of object files will go up slightly, it will not impact final binary size.
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D104080
Add tests for pending TODOs, plus some global cleanups:
* No fold: func has personality/LSDA
* Fold: reference to absolute symbol with different name but identical value
* No fold: reloc references to absolute symbols with different values
* No fold: N_ALT_ENTRY symbols
Differential Revision: https://reviews.llvm.org/D104721
"""Bitcode symbols only exist before LTO runs, and only serve the purpose of
resolving visibility so LTO can better optimize. Running LTO creates ObjFiles
from BitcodeFiles, and those ObjFiles contain regular Defined symbols (with
isec set and all) that will replace the bitcode symbols. So things should
(hopefully) work as-is :)"""
-- https://reviews.llvm.org/rGdbbc8d8333f29cf4ad6f4793da1adf71bbfdac69#inline-6081
This particular linker invocation is only run to check that we accept
options, but we don't inspect the generated command line. As all other
commands in the file have their output piped to FileCheck, the lit test
doesn't print any other output; therefore silence this one for consistency
as well.
This is consistent with how clang prints its internal commands with
-### and -v.
When linking with -verbose, we get log messages from the actual
linking written to stderr. By printing the command to the same stream,
we make sure they appear in a sensible chronological order.
Differential Revision: https://reviews.llvm.org/D104527
getLineNumber() was counting the number of line feeds from the start of
the buffer to the current token. For large linker scripts this became a
performance bottleneck. For one 4MB linker script over 4 minutes was
spent in getLineNumber's StringRef::count.
Store the line number from the last token, and only count the additional
line feeds since the last token.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D104137
This reverts commit e1adf90826.
This appears to affect the way that C++ mangled symbols appear in the
import library when using a .def file that names a C++ free function
with no name decoration. I will follow up with a reduced test case
shortly.
Fixes PR50529. With this, lld-linked Chromium base_unittests passes on arm macs.
Surprisingly, no measurable impact on link time.
Differential Revision: https://reviews.llvm.org/D104681
The variable used to need the wider scope, but doesn't after the
reland. See LC_LINKER_OPTIONS-related discussion on
https://reviews.llvm.org/D104353 for background.
Real zerofill sections go after __thread_bss, since zerofill sections
must all be at the end of their segment and __thread_bss must be right
after __thread_data.
Works fine already, but wasn't tested as far as I can tell.
Also tweak comment about zerofill sections a bit.
No behavior change.
Differential Revision: https://reviews.llvm.org/D104609
We make it less than INT_MAX in order not to conflict with the ordering
of zerofill sections, which must always be placed at the end of their
segment.
This is the more structural fix for the issue addressed in {D104596}.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D104607
This is run every time around in the main linker loop. Once a match
has been found, stop trying to rematch such a symbol.
Not sure if this has any actual measurable performance impact though
(SymbolTable::findMangle() iterates over the whole symbol table for
each call and does fuzzy matching on top of that) but this makes the
code more reassuring to read at least. (This is in practice run for def
files listing undecorated stdcall functions to be exported.)
Differential Revision: https://reviews.llvm.org/D104529
Pass the original argv[0] to the coff linker, as the coff linker uses
the basename of argv[0] as the log prefix.
This makes error messages to be printed with a "ld.lld:" prefix
instead of "lld-link:". The current "lld-link:" prefix can be confusing
to users, as they're invoking the MinGW linker (and might not even have
a lld-link executable).
Keep the first argument as lld-link when printing the command line, to
make it an actually reproducible standalone command.
Differential Revision: https://reviews.llvm.org/D104526
The exact location doesn't matter, but it should be in front
of __thread_bss. We put it right in front of __thread_data
which is where ld64 seems to put it as well.
Fixes PR50769.
(As mentioned on the bug, there is probably a more structural
fix too, see comment 5. If we don't address this, it's likely
we'll run into this again with other synthetic sections. But
for now, let's fix the immediate breakage.)
Differential Revision: https://reviews.llvm.org/D104596
...instead of S_NON_LAZY_SYMBOL_POINTERS. This matches ld64.
Part of PR50769.
While here, also remove an old TODO that was done in D87178.
Differential Revision: https://reviews.llvm.org/D104594
findLibrary() returned a StringRef while findFramework & other helper
functions returned std::strings. Standardize on std::string.
(I initially tried making the helper functions all return StringRefs,
but I realized we shouldn't return input StringRefs since their
lifetimes would not be obvious from the calling code.)
Previously, we asserted that such a case was invalid, but in fact
`ld -r` can emit such symbols if the input contained a (true) private
extern, or if it contained a symbol started with "L".
Non-extern symbols marked as private extern are essentially equivalent
to regular TU-scoped symbols, so no new functionality is needed.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D104502
The `icf` command-line option is not present in ld64, so it should use the LLD option syntax, which begins with double dashes and separates primary option from any suboption with the equal sign.
Differential Revision: https://reviews.llvm.org/D104548
This change revisits https://reviews.llvm.org/D79248 which originally
added support for the --unresolved-symbols flag.
At the time I thought it would make sense to add a third option to this
flag called `import-functions` but it turns out (as was suspects by on
the reviewers IIRC) that this option can be authoganal.
Instead I've added a new option called `--import-undefined` that only
operates on symbols that can be imported (for example, function symbols
can always be imported as opposed to data symbols we can only be
imported when compiling with PIC).
This option gives us the full expresivitiy that emscripten needs to be
able allow reporting of undefined data symbols as well as the option to
disable that.
This change does remove the `--unresolved-symbols=import-functions`
option, which is been in the codebase now for about a year but I would
be extremely surprised if anyone was using it.
Differential Revision: https://reviews.llvm.org/D103290
ICF = Identical C(ode|OMDAT) Folding
This is the LLD ELF/COFF algorithm, adapted for MachO. So far, only `-icf all` is supported. In order to support `-icf safe`, we will need to port address-significance tables (`.addrsig` directives) to MachO, which will come in later diffs.
`check-{llvm,clang,lld}` have 0 regressions for `lld -icf all` vs. baseline ld64.
We only run ICF on `__TEXT,__text` for reasons explained in the block comment in `ConcatOutputSection.cpp`.
Here is the perf impact for linking `chromium_framekwork` on a Mac Pro (16-core Xeon W) for the non-ICF case vs. pre-ICF:
```
N Min Max Median Avg Stddev
x 20 4.27 4.44 4.34 4.349 0.043029977
+ 20 4.37 4.46 4.405 4.4115 0.025188761
Difference at 95.0% confidence
0.0625 +/- 0.0225658
1.43711% +/- 0.518873%
(Student's t, pooled s = 0.0352566)
```
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D103292
We need to dedup archive loads (similar to what we do for dylib
loads).
I noticed this issue after building some Swift stuff that used
`-force_load_swift_libs`, as it caused some Swift archives to be loaded
many times.
Reviewed By: #lld-macho, thakis, MaskRay
Differential Revision: https://reviews.llvm.org/D104353
After D77330, the comments are inconsistent with the disassembled code.
As the value of `far` has been changed, a thunk to reach it is now
generated, and target addresses of branch instructions are different
from what was initially expected.
The patch fixes that and makes the test closer to what it was originally.
Differential Revision: https://reviews.llvm.org/D104286
The following class isn't part of the export table; there's a
second correctly placed comment about the things that actually
belong to the export table.
I removed them in rG5de7467e982 but @thakis pointed out that
they were useful to keep, so here they are again. I've also converted
the `!isCoalescedWeak()` asserts into `!shouldOmitFromOutput()` asserts,
since the latter check subsumes the former.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D104169
It's a warning in ld64. While having LLD be stricter would be nice, it
makes it harder for it to be a drop-in replacement into existing builds.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D104333
During PHDR creation, the case where an output section does not require a
PT_LOAD header but still occupies memory in the current VMA region was not handled.
If such an output section interleaves two output sections that have the same
VMA and LMA regions set, we would previously re-use the existing PT_LOAD header
for the second output section.
However, since the memory region is not contiguous, we need to start a new PT_LOAD
segment.
This fixes https://bugs.llvm.org/show_bug.cgi?id=50558
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D103815