b843cc5d5a introduced a new op LICM transformation and a LoopLike interface,
but missed the CMake aspects of it. This should fix the build.
PiperOrigin-RevId: 275038533
This change refactors the toyc driver to be much cleaner and easier to extend. It also cleans up a few comments in the combiner.
PiperOrigin-RevId: 274973808
The SpecId decoration is the handle for providing external specialization.
Similar to descriptor set and binding on global variables, we directly
bake it into assembly parsing and printing.
PiperOrigin-RevId: 274893879
This is using Table-driven Declarative Rewrite Rules (DRR), the previous
version of the tutorial only showed the C++ patterns.
Closestensorflow/mlir#187
PiperOrigin-RevId: 274852321
This CL adds a missing lowering for splat of multi-dimensional vectors.
Additional support is also added to the runtime utils library to allow printing memrefs with such vectors.
PiperOrigin-RevId: 274794723
Python bindings currently currently provide a makeScalarType function that
constructs one of the predefined types. It was implemented in the bindings
directly to circumvent the absence of standalone type parsing function. Now
that mlir::parseType has been made available, rely on the core parsing
procedure to construct types from strings in the bindings.
This changes includes a library reshuffling that splits out "CoreAPIs"
implementing the binding helper APIs into a separate library and makes that
dependent on the Parser library.
PiperOrigin-RevId: 274794516
The value defined in a loop was not being used and the function producing it
re-evaluated instead. Use the value to avoid both the warning and the
re-evaluation.
PiperOrigin-RevId: 274794459
This effectively rewrites Ch.2 to introduce dialects, operations, and registration instead of deferring to Ch.3. This allows for introducing the best practices up front(using ODS, registering operations, etc.), and limits the opaque API to the chapter document instead of the code.
PiperOrigin-RevId: 274724289
When dealing with regions, or other patterns that need to generate temporary operations, it is useful to be able to replace other operations than the root op being matched. Before this PR, these operations would still be considered for legalization meaning that the conversion would either fail, erroneously need to mark these ops as legal, or add unnecessary patterns.
PiperOrigin-RevId: 274598513
When the implementation of the strided memref [RFC](https://groups.google.com/a/tensorflow.org/forum/#!msg/mlir/MaL8m2nXuio/1scRqZa6AQAJ) landed, linalg started using this type instead of the now retired !linalg.view.
As static and partially static cases appear, the stride information needs to be maintained properly. In particular, the result type of the subview op was generally incorrect.
This CL fixes the issue by computing a return type that:
1. always has dynamic sizes, which is generally the only correct way to construct a subview in the absence of data padding and/or code versioning.
2. has the same strides as the base strided memref.
Point 1. above can be further refined but will needs further analysis and canonicalization to optimize the particular case where:
1. The base memref has static size along a given dimension.
2. The subview size can be statically derived (e.g. after canonicalization).
3. *And* the subview size is an even divisor of the base memref.
This 3rd constraint is well-known in the case of tiled layouts that don't assume implicit padding: the boundary tile may be only partial and has size given by `problem_size % tile_size`.
Tests are updated as appropriate.
PiperOrigin-RevId: 274578624
This fixes an omission that prevents Linalg to lower generic ops regions operating on ops in the VectorOps dialect.
To achieve this we simply need to `populateVectorToLLVMConversionPatterns` in the conversion.
Relevant tests are added.
PiperOrigin-RevId: 274577325
Originally, the lowering of `alloc` operations has been computing the number of
bytes to allocate when lowering based on the properties of MLIR type. This does
not take into account type legalization that happens when compiling LLVM IR
down to target assembly. This legalization can widen the type, potentially
leading to out-of-bounds accesses to `alloc`ed data due to mismatches between
address computation that takes the widening into account and allocation that
does not. Use the LLVM IR's equivalent of `sizeof` to compute the number of
bytes to be allocated:
%0 = getelementptr %type* null, %indexType 0
%1 = ptrtoint %type* %0 to %indexType
adapted from
http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt
PiperOrigin-RevId: 274159900
Similarly to `llvm.mlir.undef`, this auxiliary operation creates an SSA value
that corresponds to `null` in LLVM IR. This operation is necessary to model
sizeof(<...>) behavior when allocating memory.
PiperOrigin-RevId: 274158760
- dropping what looks like outdated code post some of the previous
updates
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#179
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/179 from bondhugula:llfix 2a72ea441fe1b3924802273ffbe9870afeb90f91
PiperOrigin-RevId: 274158273
This test was not updated in the original commit that switched to using LLVM
functions since it wasn't broken by that change. FileCheck was able to match
the `func` part of `llvm.func` to the expected pattern and continue as usual.
Make sure the `llvm.` dialect prefix is included in the expected output.
PiperOrigin-RevId: 274127281
On failure, the IR is likely to be in an invalid state, meaning the custom printer for some operations may now crash. Using the generic op form prevents this from happening.
PiperOrigin-RevId: 274104146
This cl adds support for generating a .mlir file containing a reproducer for crashes and failures that happen during pass execution. The reproducer contains a comment detailing the configuration of the pass manager(e.g. the textual description of the pass pipeline that the pass manager was executing), along with the original input module.
Example Output:
// configuration: -pass-pipeline='func(cse, canonicalize), inline'
// note: verifyPasses=false
module {
...
}
PiperOrigin-RevId: 274088134
In Standard to LLVM dialect conversion, the binary op conversion pattern
implicitly assumed some operands were of LLVM IR dialect type. This is not
necessarily true, for example if the Ops that produce those operands did not
match the existing convresion patterns. Check if all operands are of LLVM IR
dialect type and if not, fail to patch the binary op pattern.
Closestensorflow/mlir#168
PiperOrigin-RevId: 274063207
Translation to LLVM expects the entry module to have only specific types of ops
that correspond to LLVM IR entities allowed in a module. Currently those are
restricted to functions and globals. Introduce an additional check at the
module level. Inside individual functions, the check for supported Ops is
already performed, but it accepts all LLVM dialect Ops and wouldn't be
immediately applicable at the module level.
PiperOrigin-RevId: 274058651
The lowering is specified as a pattern and is done only if the result
is a SPIR-V scalar type or vector type.
Handling ConstantOp with index return type needs special handling
since SPIR-V dialect does not have index types. Based on the bitwidth
of the attribute value, either i32 or i64 is chosen.
Other constant lowerings are left as a TODO.
PiperOrigin-RevId: 274056805
This will allow for inlining newly devirtualized calls, as well as give a more accurate cost model(when we have one). Currently canonicalization will only run for nodes that have no child edges, as the child nodes may be erased during canonicalization. We can support this in the future, but it requires more intricate deletion tracking.
PiperOrigin-RevId: 274011386
When an operation with regions gets replaced, we currently require that all of the remaining nested operations are still converted even though they are going to be replaced when the rewrite is finished. This cl adds a tracking for a minimal set of operations that are known to be "dead". This allows for ignoring the legalization of operations that are won't survive after conversion.
PiperOrigin-RevId: 274009003
We are now properly enforcing the absence of index elements in memrefs and
tensors. Instead, users are expected to store sized integers and cast them to
index type if necessary. Expose the respective operation to Python bindings.
PiperOrigin-RevId: 273985856
1. Rename test ops referencing operand to index from 0 consistent with how we index elsewhere.
2. Don't limit type checking that functions for all shaped types to only tensors.
3. Don't limit (element) type checking functions and add tests for scalars.
4. Remove SSA values that don't do anything.
PiperOrigin-RevId: 273917608
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.
Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.
PiperOrigin-RevId: 273910855
variadic result.
Add missing test for single line fix to `void OpEmitter::genFolderDecls()`
entitled "Fold away reduction over 0 dimensions."
PiperOrigin-RevId: 273880337
Allow printing out pipelines in a format that is as close as possible to the
textual pass pipeline format. Individual passes can override the print function
in order to format any options that may have been used to construct that pass.
PiperOrigin-RevId: 273813627