structure that represents a mapping without any dependencies on SubRegIndex
numbering.
This brings us closer to being able to remove the explicit SubRegIndex
numbering, and it is now possible to specify any mapping without inventing
*_INVALID register classes.
llvm-svn: 104563
sub-register indices and outputs a single super register which is formed from
a consecutive sequence of registers.
This is used as register allocation / coalescing aid and it is useful to
represent instructions that output register pairs / quads. For example,
v1024, v1025 = vload <address>
where v1024 and v1025 forms a register pair.
This really should be modelled as
v1024<3>, v1025<4> = vload <address>
but it would violate SSA property before register allocation is done.
Currently we use insert_subreg to form the super register:
v1026 = implicit_def
v1027 - insert_subreg v1026, v1024, 3
v1028 = insert_subreg v1027, v1025, 4
...
= use v1024
= use v1028
But this adds pseudo live interval overlap between v1024 and v1025.
We can now modeled it as
v1024, v1025 = vload <address>
v1026 = REG_SEQUENCE v1024, 3, v1025, 4
...
= use v1024
= use v1026
After coalescing, it will be
v1026<3>, v1025<4> = vload <address>
...
= use v1026<3>
= use v1026
llvm-svn: 102815
record* -> instrinfo instead of std::string -> instrinfo.
This speeds up tblgen on cellcpu from 7.28 -> 5.98s with a debug
build (20%).
llvm-svn: 98916
changing the primary datastructure from being a
"std::vector<unsigned char>" to being a new TypeSet class
that actually has (gasp) invariants!
This changes more things than I remember, but one major
innovation here is that it enforces that named input
values agree in type with their output values.
This also eliminates code that transparently assumes (in
some cases) that SDNodeXForm input/output types are the
same, because this is wrong in many case.
This also eliminates a bug which caused a lot of ambiguous
patterns to go undetected, where a register class would
sometimes pick the first possible type, causing an
ambiguous pattern to get arbitrary results.
With all the recent target changes, this causes no
functionality change!
llvm-svn: 98534
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687
unused DECLARE instruction.
KILL is not yet used anywhere, it will replace TargetInstrInfo::IMPLICIT_DEF
in the places where IMPLICIT_DEF is just used to alter liveness of physical
registers.
llvm-svn: 83006
ADDC/ADDE use MVT::i1 (later, whatever it gets legalized to)
instead of MVT::Flag. Remove CARRY_FALSE in favor of 0; adjust
all target-independent code to use this format.
Most targets will still produce a Flag-setting target-dependent
version when selection is done. X86 is converted to use i32
instead, which means TableGen needs to produce different code
in xxxGenDAGISel.inc. This keys off the new supportsHasI1 bit
in xxxInstrInfo, currently set only for X86; in principle this
is temporary and should go away when all other targets have
been converted. All relevant X86 instruction patterns are
modified to represent setting and using EFLAGS explicitly. The
same can be done on other targets.
The immediate behavior change is that an ADC/ADD pair are no
longer tightly coupled in the X86 scheduler; they can be
separated by instructions that don't clobber the flags (MOV).
I will soon add some peephole optimizations based on using
other instructions that set the flags to feed into ADC.
llvm-svn: 72707
and argument positions but only to the overloaded intrinsic parameters.
Keep a separate list of these overloaded parameters in CodeGenTarget.cpp
so they can be resolved easily. Remove assertions from IntrinsicEmitter.cpp:
they were harmless but confusing, and the assertions elsewhere in TableGen
will catch any incorrect values.
llvm-svn: 69316
This will be used to replace things like X86's MOV32to32_.
Enhance ScheduleDAGSDNodesEmit to be more flexible and robust
in the presense of subregister superclasses and subclasses. It
can now cope with the definition of a virtual register being in
a subclass of a use.
Re-introduce the code for recording register superreg classes and
subreg classes. This is needed because when subreg extracts and
inserts get coalesced away, the virtual registers are left in
the correct subclass.
llvm-svn: 68961
target directories themselves. This also means that VMCore no longer
needs to know about every target's list of intrinsics. Future work
will include converting the PowerPC target to this interface as an
example implementation.
llvm-svn: 63765
to handle LLVMMatchType intrinsic parameters, and by adding new subclasses
of LLVMMatchType to match vector types with integral elements that are
either twice as wide or half as wide as the elements of the matched type.
llvm-svn: 61834
"parameter" types. An intrinsic can now return a multiple return values like
this:
def add_with_overflow : Intrinsic<[llvm_i32_ty, llvm_i1_ty],
[LLVMMatchType<0>, LLVMMatchType<0>]>;
llvm-svn: 59237
to different address spaces. This alters the naming scheme for those
intrinsics, e.g., atomic.load.add.i32 => atomic.load.add.i32.p0i32
llvm-svn: 54195
the need for a flavor operand, and add a new SDNode subclass,
LabelSDNode, for use with them to eliminate the need for a label id
operand.
Change instruction selection to let these label nodes through
unmodified instead of creating copies of them. Teach the MachineInstr
emitter how to emit a MachineInstr directly from an ISD label node.
This avoids the need for allocating SDNodes for the label id and
flavor value, as well as SDNodes for each of the post-isel label,
label id, and label flavor.
llvm-svn: 52943
Added abstract class MemSDNode for any Node that have an associated MemOperand
Changed atomic.lcs => atomic.cmp.swap, atomic.las => atomic.load.add, and
atomic.lss => atomic.load.sub
llvm-svn: 52706
and better control the abstraction. Rename the type
to MVT. To update out-of-tree patches, the main
thing to do is to rename MVT::ValueType to MVT, and
rewrite expressions like MVT::getSizeInBits(VT) in
the form VT.getSizeInBits(). Use VT.getSimpleVT()
to extract a MVT::SimpleValueType for use in switch
statements (you will get an assert failure if VT is
an extended value type - these shouldn't exist after
type legalization).
This results in a small speedup of codegen and no
new testsuite failures (x86-64 linux).
llvm-svn: 52044
CodeGenDAGPatterns, where it can be used in other tablegen backends.
This allows the inference to be done for DAGISelEmitter so that it
gets accurate mayLoad/mayStore/isSimpleLoad flags.
This brings MemOperand functionality back to where it was before
48329. However, it doesn't solve the problem of anonymous patterns
which expand to code that does loads or stores.
llvm-svn: 49123
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
llvm-svn: 46659
the pattern when generating matchin code.
The first (and currently, only) attribute causes the immediate parent node of the ComplexPattern operand to be passed into the matching code rather than the node at the root of the entire DAG containing the pattern.
llvm-svn: 46606
x86 backend where instructions were not marked maystore/mayload, and perf issues where
instructions were not marked neverHasSideEffects. It would be really nice if we could
write patterns for copy instructions.
I have audited all the x86 instructions down to MOVDQAmr. The flags on others and on
other targets are probably not right in all cases, but no clients currently use this
info that are enabled by default.
llvm-svn: 45829
This also changes the syntax for llvm.bswap, llvm.part.set, llvm.part.select, and llvm.ct* intrinsics. They are automatically upgraded by both the LLVM ASM reader and the bitcode reader. The test cases have been updated, with special tests added to ensure the automatic upgrading is supported.
llvm-svn: 40807
InOperandList. This gives one piece of important information: # of results
produced by an instruction.
An example of the change:
def ADD32rr : I<0x01, MRMDestReg, (ops GR32:$dst, GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
=>
def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>;
llvm-svn: 40033
instruction flag, and use the flag along with a virtual member function
hook for targets to override if there are instructions that are only
trivially rematerializable with specific operands (i.e. constant pool
loads).
llvm-svn: 37728
with a general target hook to identify rematerializable instructions. Some
instructions are only rematerializable with specific operands, such as loads
from constant pools, while others are always rematerializable. This hook
allows both to be identified as being rematerializable with the same
mechanism.
llvm-svn: 37644
Implement code generation for overloaded intrinsic functions. The basic
difference is that "actual" argument types must be provided when
constructing intrinsic names and types. Also, for recognition, only the
prefix is examined. If it matches, the suffix is assumed to match. The
suffix is checked by the Verifier, however.
llvm-svn: 35539
not be used for anything other than backwards compat constraint handling.
Add support for a new DisableEncoding property which contains a list of
registers that should not be encoded by the generated code emitter. Convert
the codeemitter generator to use this, fixing some PPC JIT regressions.
llvm-svn: 31769