MIR support is totally unusable for AMDGPU without this, since the set
of reserved registers is set from fields here.
Add a clone method to MachineFunctionInfo. This is a subtle variant of
the copy constructor that is required if there are any MIR constructs
that use pointers. Specifically, at minimum fields that reference
MachineBasicBlocks or the MachineFunction need to be adjusted to the
values in the new function.
The name `MCFixedLenDisassembler.h` is out of date after D120958.
Rename it as `MCDecoderOps.h` to reflect the change.
Reviewed By: myhsu
Differential Revision: https://reviews.llvm.org/D124987
Use the contextually appropriate value instead of relying on the
default address space default parameters. Usually you should be
reusing a pre-existing type.
All LLVM backends use MCDisassembler as a base class for their
instruction decoders. Use "const MCDisassembler *" for the decoder
instead of "const void *". Remove unnecessary static casts.
Reviewed By: skan
Differential Revision: https://reviews.llvm.org/D122245
As usual with that header cleanup series, some implicit dependencies now need to
be explicit:
llvm/MC/MCParser/MCAsmParser.h no longer includes llvm/MC/MCParser/MCAsmLexer.h
Preprocessed lines to build llvm on my setup:
after: 1068185081
before: 1068324320
So no compile time benefit to expect, but we still get the looser coupling
between files which is great.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119359
There's a few relevant forward declarations in there that may require downstream
adding explicit includes:
llvm/MC/MCContext.h no longer includes llvm/BinaryFormat/ELF.h, llvm/MC/MCSubtargetInfo.h, llvm/MC/MCTargetOptions.h
llvm/MC/MCObjectStreamer.h no longer include llvm/MC/MCAssembler.h
llvm/MC/MCAssembler.h no longer includes llvm/MC/MCFixup.h, llvm/MC/MCFragment.h
Counting preprocessed lines required to rebuild llvm-project on my setup:
before: 1052436830
after: 1049293745
Which is significant and backs up the change in addition to the usual benefits of
decreasing coupling between headers and compilation units.
Discourse thread: https://discourse.llvm.org/t/include-what-you-use-include-cleanup
Differential Revision: https://reviews.llvm.org/D119244
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
This reverts commit fd4808887e.
This patch causes gcc to issue a lot of warnings like:
warning: base class ‘class llvm::MCParsedAsmOperand’ should be
explicitly initialized in the copy constructor [-Wextra]
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
Recognize Bi as an unconditional branch, just like JMP. This allows
machine verification to run after MSP430BranchSelector without failing
this assertion:
virtual bool llvm::MSP430InstrInfo::analyzeBranch(llvm::MachineBasicBlock &, llvm::MachineBasicBlock *&, llvm::MachineBasicBlock *&, SmallVectorImpl<llvm::MachineOperand> &, bool) const: Assertion `I->getOpcode() == MSP430::JCC && "Invalid conditional branch"' failed.
Note that machine verification is currently disabled after
addPreEmitPass passes because of problems on other targets, so this is
currently NFC.
Differential Revision: https://reviews.llvm.org/D110691
The MSP430 ABI supports build attributes for specifying
the ISA, code model, data model and enum size in ELF object files.
Differential Revision: https://reviews.llvm.org/D107969
Soft deprecrate isNullValue/isAllOnesValue and update in tree
callers. This matches the changes to the APInt interface from
D109483.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D109535
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
This patch factors out the part of printInstruction that gets the
mnemonic string for a given MCInst. This is intended to be used
subsequently for the instruction-mix remarks to display the final
mnemonic (D90040).
Unfortunately making `getMnemonic` available to the AsmPrinter
seems to require making it virtual. Not sure if there's a way around
that with the current layering of the AsmPrinters.
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D90039
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
Follow up from a similar patch on RISCV 637f19c36b
Nothing reads this Glue value that I could see. The SDNode def in
the td file does not have the SDNPOutGlue flag so I don't think
this glue would get properly propagated to MachineSDNodes if it
was used.
In most of lib/Target we know that we are not dealing with scalable
types so it's perfectly fine to replace TypeSize comparison operators
with their fixed width equivalents, making use of getFixedSize()
and so on.
Differential Revision: https://reviews.llvm.org/D89101
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
For TI's distribution of msp430-gcc
```
msp430-elf-gcc -S -o- -Os -x c - <<< "int f(float a, float b) { return a != b; }"
```
does not mention `R13` at all. `__libgcc_cmp_return__` machine mode is 2 byte on MSP430, as well.
Differential Revision: https://reviews.llvm.org/D82635
When writing a unit test on replacing standard epilogue sequences with `BR __mspabi_func_epilog_<N>`, by manually asm-clobbering `rN` - `r10` for N = 4..10, everything worked well except for seeming inability to clobber r4.
The problem was that MSP430 code generator of LLVM used an obsolete name FP for that register. Things were worse because when `llc` read an unknown register name, it silently ignored it.
That is, I cannot use `fp` register name from the C code because Clang does not accept it (exactly like GCC). But the accepted name `r4` is not recognised by `llc` (it can be used in listings passed to `llvm-mc` and even `fp` is replace to `r4` by `llvm-mc`). So I can specify any of `fp` or `r4` for the string literal of `asm(...)` but nothing in the clobber list.
This patch replaces `MSP430::FP` with `MSP430::R4` in the backend code (even [MSP430 EABI](http://www.ti.com/lit/an/slaa534/slaa534.pdf) doesn't mention FP as a register name). The R0 - R3 registers, on the other hand, are left as is in the backend code (after all, they have some special meaning on the ISA level). It is just ensured clang is renaming them as expected by the downstream tools. There is probably not much sense in **marking them clobbered** but rename them //just in case// for use at potentially different contexts.
Differential Revision: https://reviews.llvm.org/D82184
When writing a unit test on replacing standard epilogue sequences with `BR __mspabi_func_epilog_<N>`, by manually asm-clobbering `rN` - `r10` for N = 4..10, everything worked well except for seeming inability to clobber r4.
The problem was that MSP430 code generator of LLVM used an obsolete name FP for that register. Things were worse because when `llc` read an unknown register name, it silently ignored it.
Differential Revision: https://reviews.llvm.org/D82184
This commit technically permits LLVM to emit the debug information for ELF files for MSP430 architecture. Aside from this, it only defines the register numbers as defined by part 10.1 of MSP430 EABI specification (assuming the 1-byte subregisters share the register numbers with corresponding full-size registers).
This commit was basically tested by me with TI-provided GCC 8.3.1 toolchain by compiling an example program with `clang` (please note manual linking may be required due to upstream `clang` not yet handling the `-msim` option necessary to run binaries on the GDB-provided simulator) and then running it and single-stepping with `msp430-elf-gdb` like this:
```
$sysroot/bin/msp430-elf-gdb ./test -ex "target sim" -ex "load ./test"
(gdb) ... traditional GDB commands follow ...
```
While this implementation is most probably far from completeness and is considered experimental, it can already help with debugging MSP430 programs as well as finding issues in LLVM debug info support for MSP430 itself.
One of the use cases includes trying to find a point where UBSan check in a trap-on-error mode was triggered.
The expected debug information format is described in the [MSP430 Embedded Application Binary Interface](http://www.ti.com/lit/an/slaa534/slaa534.pdf) specification, part 10.
Differential Revision: https://reviews.llvm.org/D81488
Summary: Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::HandleByVal` without marking it `override`.
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81365