We currently always store absolute filenames in coverage mapping. This
is problematic for several reasons. It poses a problem for distributed
compilation as source location might vary across machines. We are also
duplicating the path prefix potentially wasting space.
This change modifies how we store filenames in coverage mapping. Rather
than absolute paths, it stores the compilation directory and file paths
as given to the compiler, either relative or absolute. Later when
reading the coverage mapping information, we recombine relative paths
with the working directory. This approach is similar to handling
ofDW_AT_comp_dir in DWARF.
Finally, we also provide a new option, -fprofile-compilation-dir akin
to -fdebug-compilation-dir which can be used to manually override the
compilation directory which is useful in distributed compilation cases.
Differential Revision: https://reviews.llvm.org/D95753
We currently always store absolute filenames in coverage mapping. This
is problematic for several reasons. It poses a problem for distributed
compilation as source location might vary across machines. We are also
duplicating the path prefix potentially wasting space.
This change modifies how we store filenames in coverage mapping. Rather
than absolute paths, it stores the compilation directory and file paths
as given to the compiler, either relative or absolute. Later when
reading the coverage mapping information, we recombine relative paths
with the working directory. This approach is similar to handling
ofDW_AT_comp_dir in DWARF.
Finally, we also provide a new option, -fprofile-compilation-dir akin
to -fdebug-compilation-dir which can be used to manually override the
compilation directory which is useful in distributed compilation cases.
Differential Revision: https://reviews.llvm.org/D95753
Clang usually propagates counter mapping region for conditions of `if`, `while`,
`for`, etc from parent counter. We should do the same for condition of conditional operator.
Differential Revision: https://reviews.llvm.org/D95918
This is an enhancement to LLVM Source-Based Code Coverage in clang to track how
many times individual branch-generating conditions are taken (evaluate to TRUE)
and not taken (evaluate to FALSE). Individual conditions may comprise larger
boolean expressions using boolean logical operators. This functionality is
very similar to what is supported by GCOV except that it is very closely
anchored to the ASTs.
Differential Revision: https://reviews.llvm.org/D84467
Summary:
D82928 generated unexpected tmp files in the CoverageMapping test directory. This patch cleans it up and remove the file in the test bots.
It will be revered after a week.
Reviewers: thakis
Reviewed By: thakis
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82992
Summary: The test file in D82928 generated temp files within the test directory, causing test failures. Fix it.
Reviewers: modocache, fhahn
Reviewed By: modocache
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82986
Summary:
Previously, source-based coverage analysis does not work properly for coroutine.
This patch adds processing of coroutine body and co_return in the coverage analysis, so that we can handle them properly.
For coroutine body, we should only look at the actual function body and ignore the compiler-generated things; for co_return, we need to terminate the region similar to return statement.
Added a test, and confirms that it now works properly. (without this patch, the statement after the if statement will be treated wrongly)
Reviewers: lewissbaker, modocache, junparser
Reviewed By: modocache
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D82928
Try again with an up-to-date version of D69471 (99317124 was a stale
revision).
---
Revise the coverage mapping format to reduce binary size by:
1. Naming function records and marking them `linkonce_odr`, and
2. Compressing filenames.
This shrinks the size of llc's coverage segment by 82% (334MB -> 62MB)
and speeds up end-to-end single-threaded report generation by 10%. For
reference the compressed name data in llc is 81MB (__llvm_prf_names).
Rationale for changes to the format:
- With the current format, most coverage function records are discarded.
E.g., more than 97% of the records in llc are *duplicate* placeholders
for functions visible-but-not-used in TUs. Placeholders *are* used to
show under-covered functions, but duplicate placeholders waste space.
- We reached general consensus about giving (1) a try at the 2017 code
coverage BoF [1]. The thinking was that using `linkonce_odr` to merge
duplicates is simpler than alternatives like teaching build systems
about a coverage-aware database/module/etc on the side.
- Revising the format is expensive due to the backwards compatibility
requirement, so we might as well compress filenames while we're at it.
This shrinks the encoded filenames in llc by 86% (12MB -> 1.6MB).
See CoverageMappingFormat.rst for the details on what exactly has
changed.
Fixes PR34533 [2], hopefully.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118428.html
[2] https://bugs.llvm.org/show_bug.cgi?id=34533
Differential Revision: https://reviews.llvm.org/D69471
Revise the coverage mapping format to reduce binary size by:
1. Naming function records and marking them `linkonce_odr`, and
2. Compressing filenames.
This shrinks the size of llc's coverage segment by 82% (334MB -> 62MB)
and speeds up end-to-end single-threaded report generation by 10%. For
reference the compressed name data in llc is 81MB (__llvm_prf_names).
Rationale for changes to the format:
- With the current format, most coverage function records are discarded.
E.g., more than 97% of the records in llc are *duplicate* placeholders
for functions visible-but-not-used in TUs. Placeholders *are* used to
show under-covered functions, but duplicate placeholders waste space.
- We reached general consensus about giving (1) a try at the 2017 code
coverage BoF [1]. The thinking was that using `linkonce_odr` to merge
duplicates is simpler than alternatives like teaching build systems
about a coverage-aware database/module/etc on the side.
- Revising the format is expensive due to the backwards compatibility
requirement, so we might as well compress filenames while we're at it.
This shrinks the encoded filenames in llc by 86% (12MB -> 1.6MB).
See CoverageMappingFormat.rst for the details on what exactly has
changed.
Fixes PR34533 [2], hopefully.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118428.html
[2] https://bugs.llvm.org/show_bug.cgi?id=34533
Differential Revision: https://reviews.llvm.org/D69471
Revise the coverage mapping format to reduce binary size by:
1. Naming function records and marking them `linkonce_odr`, and
2. Compressing filenames.
This shrinks the size of llc's coverage segment by 82% (334MB -> 62MB)
and speeds up end-to-end single-threaded report generation by 10%. For
reference the compressed name data in llc is 81MB (__llvm_prf_names).
Rationale for changes to the format:
- With the current format, most coverage function records are discarded.
E.g., more than 97% of the records in llc are *duplicate* placeholders
for functions visible-but-not-used in TUs. Placeholders *are* used to
show under-covered functions, but duplicate placeholders waste space.
- We reached general consensus about giving (1) a try at the 2017 code
coverage BoF [1]. The thinking was that using `linkonce_odr` to merge
duplicates is simpler than alternatives like teaching build systems
about a coverage-aware database/module/etc on the side.
- Revising the format is expensive due to the backwards compatibility
requirement, so we might as well compress filenames while we're at it.
This shrinks the encoded filenames in llc by 86% (12MB -> 1.6MB).
See CoverageMappingFormat.rst for the details on what exactly has
changed.
Fixes PR34533 [2], hopefully.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118428.html
[2] https://bugs.llvm.org/show_bug.cgi?id=34533
Differential Revision: https://reviews.llvm.org/D69471
Emit a gap region beginning where the switch body begins. This sets line
execution counts in the areas between non-overlapping cases to 0.
This also removes some special handling of the first case in a switch:
these are now treated like any other case.
This does not resolve an outstanding issue with case statement regions
that do not end when a region is terminated. But it should address
llvm.org/PR44011.
Differential Revision: https://reviews.llvm.org/D70571
This reverts commit 9d4806a387.
There seem to be bugs in llvm-cov --path-equivalence that are causing
Chromium problems. Revert this until they are understood or fixed.
This reverts r374324 (git commit 62808631ac)
I changed the test to not rely on finding the sequence "clang, test,
CoverageMapping" in the CWD used to run the test. Instead it makes its
own internal directory hierarchy of foo/bar/baz and looks for that.
llvm-svn: 374403
This reverts commit f6777964bd.
Because the absolute path check relies on temporary path containing
"clang", "test" and "CoverageMapping" as a subsequence, which is not
necessarily true on all systems(breaks internal integrates). Wanted to
fix it by checking for a leading "/" instead, but then noticed that it
would break windows tests, so leaving it to the author instead.
llvm-svn: 374324
Summary:
The cache recorded the wrong expansion location for all but the first
stringization. It seems uncommon to stringize the same macro argument
multiple times, so this cache doesn't seem that important.
Fixes PR39942
Reviewers: vsk, rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D65428
llvm-svn: 367337
There is no reason to emit coverage mappings for artificial statements
contained within defaulted methods, as these statements are not visible
to users.
Only emit a mapping for the body of the defaulted method (clang treats
the text of the "default" keyword as the body when reporting locations).
This allows users to see how often the default method is called, but
trims down the coverage mapping by skipping visitation of the children
of the method.
The immediate motivation for this change is that the lexer's
getPreciseTokenLocEnd API cannot return the correct location when given
an artificial statement (with a somewhat made-up location) as an input.
Test by Orivej Desh!
Fixes llvm.org/PR39822.
llvm-svn: 347803
popRegions used to assume that the start location of a region can't be
nested deeper than the end location, which is not always true.
Patch by Orivej Desh!
Differential Revision: https://reviews.llvm.org/D53244
llvm-svn: 347262
A deferred region should end before the start of a label, and should not
extend to the start of the label sub-statement.
Fixes llvm.org/PR35867.
llvm-svn: 333715
Discard the last uncompleted deferred region in a decl, if one exists.
This prevents lines at the end of a function containing only whitespace
or closing braces from being marked as uncovered, if they follow a
region terminator (return/break/etc).
The previous behavior was to heuristically complete deferred regions at
the end of a decl. In practice this ended up being too brittle for too
little gain. Users would complain that there was no way to reach full
code coverage because whitespace at the end of a function would be
marked uncovered.
rdar://40238228
Differential Revision: https://reviews.llvm.org/D46918
llvm-svn: 333609
When parsing C++ type construction expressions with list initialization,
forward the locations of the braces to Sema.
Without these locations, the code coverage pass crashes on the given test
case, because the pass relies on getLocEnd() returning a valid location.
Here is what this patch does in more detail:
- Forwards init-list brace locations to Sema (ParseExprCXX),
- Builds an InitializationKind with these locations (SemaExprCXX), and
- Uses these locations for constructor initialization (SemaInit).
The remaining changes fall out of introducing a new overload for
creating direct-list InitializationKinds.
Testing: check-clang, and a stage2 coverage-enabled build of clang with
asserts enabled.
Differential Revision: https://reviews.llvm.org/D41921
llvm-svn: 322729
Emit a gap area starting after the r-paren location and ending at the
start of the body for the braces-optional statements (for, for-each,
while, etc). The count for the gap area equal to the body's count. This
extends the fix in r317758.
Fixes PR35387, rdar://35570345
Testing: stage2 coverage-enabled build of clang, check-clang
llvm-svn: 319373
There are some limitations with emitting regions in macro expansions
because we don't gather file IDs within the expansions. Fix the check
that prevents us from emitting deferred regions in expansions to make an
exception for headers, which is something we can handle.
rdar://35373009
llvm-svn: 317760
The area immediately after a terminated region in the function top-level
should have the same count as the label it precedes.
This solves another problem with wrapped segments. Consider:
1| a:
2| return 0;
3| b:
4| return 1;
Without a gap area starting after the first return, the wrapped segment
from line 2 would make it look like line 3 is executed, when it's not.
rdar://35373009
llvm-svn: 317759
The area immediately after the closing right-paren of an if condition
should have a count equal to the 'then' block's count. Use a gap region
to set this count, so that region highlighting for the 'then' block
remains precise.
This solves a problem we have with wrapped segments. Consider:
1| if (false)
2| foo();
Without a gap area starting after the condition, the wrapped segment
from line 1 would make it look like line 2 is executed, when it's not.
rdar://35373009
llvm-svn: 317758