Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
Summary:
This patch is an enhancement to propagate dbg.value information when Phis are created on behalf of LCSSA.
I noticed a case where a value carried across a loop was reported as <optimized out>.
Specifically this case:
```
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
```
In the above case, after all of the interesting computation completes our value
is reported as "optimized out." This change will add a dbg.value to correct this.
This patch also moves the dbg.value insertion routine from LoopRotation.cpp
into Local.cpp, so that we can share it in both places (LoopRotation and LCSSA).
Reviewers: mzolotukhin, aprantl, vsk, davide
Reviewed By: aprantl, vsk
Subscribers: dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 325926
According to the current coverage report salvageDebugInfo() is called
5.12 million times during testing and almost always returns early.
The early return depends on LocalAsMetadata::getIfExists returning null,
which involves a DenseMap lookup in an LLVMContextImpl. We can probably
speed this up by simply checking the IsUsedByMD bit in Value.
llvm-svn: 325738
Summary:
Several for loops in PromoteMemoryToRegister.cpp leave their increment
expression empty, instead incrementing the iterator within the for loop
body. I believe this is because these loops were previously implemented
as while loops; see https://reviews.llvm.org/rL188327.
Incrementing the iterator within the body of the for loop instead of
in its increment expression makes it seem like the iterator will be
modified or conditionally incremented within the loop, but that is not
the case in these loops.
Instead, use range loops.
Test Plan: `check-llvm`
Reviewers: davide, bkramer
Reviewed By: davide, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43473
llvm-svn: 325532
Move computeLoopSafetyInfo, defined in Transforms/Utils/LoopUtils.h,
into the corresponding LoopUtils.cpp, as opposed to LICM where it resides
at the moment. This will allow other functions from Transforms/Utils
to reference it.
llvm-svn: 325151
Preserve debug info from a dead 'and' instruction with a constant.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D43163
llvm-svn: 325119
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
We already try to salvage debug values from no-op bitcasts and inttoptr
instructions: we should handle ptrtoint instructions as well.
This saves an additional 24,444 debug values in a stage2 build of clang,
and (according to llvm-dwarfdump --statistics) provides an additional
289 unique source variables.
llvm-svn: 324982
Here are the number of additional debug values salvaged in a stage2
build of clang:
63 SALVAGE: MUL
1250 SALVAGE: SDIV
(No values were salvaged from `srem` instructions in this experiment,
but it's a simple case to handle so we might as well.)
llvm-svn: 324976
Here are the number of additional debug values salvaged in a stage2
build of clang:
1912 SALVAGE: ASHR
405 SALVAGE: LSHR
249 SALVAGE: SHL
llvm-svn: 324975
Extend salvageDebugInfo to preserve the debug info from a dead 'or'
with a constant.
Patch by Ismail Badawi!
Differential Revision: https://reviews.llvm.org/D43129
llvm-svn: 324764
The commit rL308422 introduces a restriction for folding unconditional
branches. Specifically if empty block with unconditional branch leads to
header of the loop then elimination of this basic block is prohibited.
However it seems this condition is redundantly strict.
If elimination of this basic block does not introduce more back edges
then we can eliminate this block.
The patch implements this relax of restriction.
The test profile/Linux/counter_promo_nest.c in compiler-rt project
is updated to meet this change.
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: pacxx
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324572
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
InlineFunction pass to ceause using the old IRBuilder CreateMemCpy single-alignment API
in favour of the new API that allows setting source and destination alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324384
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
LowerMemIntrinsics pass to cease using the old getAlignment() API of MemoryIntrinsic in
favour of getting source & dest specific alignments through the new API.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324278
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SimplifyLibCalls pass to cease using the old IRBuilder createMemCpy/createMemMove
single-alignment APIs in favour of the new API that allows setting source and destination
alignments independently.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, r3L24148 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 324273
This broke the Chromium build; see PR36238.
> This patch is an enhancement to propagate dbg.value information when
> Phis are created on behalf of LCSSA. I noticed a case where a value
> carried across a loop was reported as <optimized out>.
>
> Specifically this case:
>
> int bar(int x, int y) {
> return x + y;
> }
>
> int foo(int size) {
> int val = 0;
> for (int i = 0; i < size; ++i) {
> val = bar(val, i); // Both val and i are correct
> }
> return val; // <optimized out>
> }
>
> In the above case, after all of the interesting computation completes
> our value is reported as "optimized out." This change will add a
> dbg.value to correct this.
>
> This patch also moves the dbg.value insertion routine from
> LoopRotation.cpp into Local.cpp, so that we can share it in both places
> (LoopRotation and LCSSA).
>
> Patch by Matt Davis!
>
> Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 324247
The patch causes the failure of the test
compiler-rt/test/profile/Linux/counter_promo_nest.c
To unblock buildbot, revert the patch while investigation is in progress.
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324214
The commit rL308422 introduces a restriction for folding unconditional
branches. Specifically if empty block with unconditional branch leads to
header of the loop then elimination of this basic block is prohibited.
However it seems this condition is redundantly strict.
If elimination of this basic block does not introduce more back edges
then we can eliminate this block.
The patch implements this relax of restriction.
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: pacxx
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42691
llvm-svn: 324208
When using the partial inliner, we might have attributes for forwarded
varargs, but the CodeExtractor does not create an empty argument
attribute set for regular arguments in that case, because it does not know
of the additional arguments. So in case we have attributes for VarArgs, we
also have to make sure we create (empty) attributes for all regular arguments.
This fixes PR36210.
llvm-svn: 324197
The type-shrinking logic in reduction detection, although narrow in scope, is
also rather ad-hoc, which has led to bugs (e.g., PR35734). This patch modifies
the approach to rely on the demanded bits and value tracking analyses, if
available. We currently perform type-shrinking separately for reductions and
other instructions in the loop. Long-term, we should probably think about
computing minimal bit widths in a more complete way for the loops we want to
vectorize.
PR35734
Differential Revision: https://reviews.llvm.org/D42309
llvm-svn: 324195
If you have a long chain of select instructions created from something
like `int* p = &g; if (foo()) p += 4; if (foo2()) p += 4;` etc., a naive
recursive visitor will recursively visit each select twice, which is
O(2^N) in the number of select instructions. Use the visited set to cut
off recursion in this case.
(No testcase because this doesn't actually change the behavior, just the
time.)
Differential Revision: https://reviews.llvm.org/D42451
llvm-svn: 323910
Summary:
This is exposed during ThinLTO compilation, when we import an alias by
creating a clone of the aliasee. Without this fix the debug type is
unnecessarily cloned and we get a duplicate, undoing the uniquing.
Fixes PR36089.
Reviewers: mehdi_amini, pcc
Subscribers: eraman, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D41669
llvm-svn: 323813
Inserting a dbg.value instruction at the start of a basic block with a
landingpad instruction triggers a verifier failure. We should be OK if
we insert the instruction a bit later.
Speculative fix for the bot failure described here:
https://reviews.llvm.org/D42551
llvm-svn: 323482
This patch is an enhancement to propagate dbg.value information when
Phis are created on behalf of LCSSA. I noticed a case where a value
carried across a loop was reported as <optimized out>.
Specifically this case:
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
In the above case, after all of the interesting computation completes
our value is reported as "optimized out." This change will add a
dbg.value to correct this.
This patch also moves the dbg.value insertion routine from
LoopRotation.cpp into Local.cpp, so that we can share it in both places
(LoopRotation and LCSSA).
Patch by Matt Davis!
Differential Revision: https://reviews.llvm.org/D42551
llvm-svn: 323472
Summary:
The class wraps a uint64_t and an enum to represent the type of profile
count (real and synthetic) with some helper methods.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41883
llvm-svn: 322771
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perform the
preversation was minimally altered and simply marked as
preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements such as threading across loop headers.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: mgorny, dmgreen, kuba, rnk, rsmith, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 322401
This is a fix for PR35884.
When we want to delete dead loop we must clean uses in unreachable blocks
otherwise we'll get an assert during deletion of instructions from the loop.
Reviewers: anna, davide
Reviewed By: anna
Subscribers: llvm-commits, lebedev.ri
Differential Revision: https://reviews.llvm.org/D41943
llvm-svn: 322357
The function can take a significant amount of time on some
complicated test cases, but for the currently only use of
the function we can stop the initialization much earlier
when we find out we are going to discard the result anyway
in the caller of the function.
Adding configurable cut-off points so that we avoid wasting time.
NFCI.
llvm-svn: 322248
In addition to target-dependent attributes, we can also preserve a
white-listed subset of target independent function attributes. The white-list
excludes problematic attributes, most prominently:
* attributes related to memory accesses, as alloca instructions
could be moved in/out of the extracted block
* control-flow dependent attributes, like no_return or thunk, as the
relerelevant instructions might or might not get extracted.
Thanks @efriedma and @aemerson for providing a set of attributes that cannot be
propagated.
Reviewers: efriedma, davidxl, davide, silvas
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D41334
llvm-svn: 321961
If the varargs are not accessed by a function, we can inline the
function.
Reviewers: dblaikie, chandlerc, davide, efriedma, rnk, hfinkel
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D41335
llvm-svn: 321940
Having a single call to findDbgUsers() allows salvageDebugInfo() to
return earlier.
Differential Revision: https://reviews.llvm.org/D41787
llvm-svn: 321915
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 321825
This came up during discussions in llvm-commits for
rL321653: Check for unreachable preds before updating LI in
UpdateAnalysisInformation
The assert provides hints to passes to require both DT and LI if we plan on
updating LI through this function.
Tests run: make check
llvm-svn: 321805
Summary:
We are incorrectly updating the LI when loop-simplify generates
dedicated exit blocks for a loop. The issue is that there's an implicit
assumption that the Preds passed into UpdateAnalysisInformation are
reachable. However, this is not true and breaks LI by incorrectly
updating the header of a loop.
One such case is when we generate dedicated exits when the exit block is
a landing pad (through SplitLandingPadPredecessors). There maybe other
cases as well, since we do not guarantee that Preds passed in are
reachable basic blocks.
The added test case shows how loop-simplify breaks LI for the outer loop (and DT in turn)
after we try to generate the LoopSimplifyForm.
Reviewers: davide, chandlerc, sanjoy
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41519
llvm-svn: 321653