When prelink is installed in the system, prelink-ed
libraries map between 0x003000000000 and 0x004000000000 thus occupying the shadow Gap,
so we need so split the address space even further, like this:
|| [0x10007fff8000, 0x7fffffffffff] || HighMem ||
|| [0x02008fff7000, 0x10007fff7fff] || HighShadow ||
|| [0x004000000000, 0x02008fff6fff] || ShadowGap3 ||
|| [0x003000000000, 0x003fffffffff] || MidMem ||
|| [0x00087fff8000, 0x002fffffffff] || ShadowGap2 ||
|| [0x00067fff8000, 0x00087fff7fff] || MidShadow ||
|| [0x00008fff7000, 0x00067fff7fff] || ShadowGap ||
|| [0x00007fff8000, 0x00008fff6fff] || LowShadow ||
|| [0x000000000000, 0x00007fff7fff] || LowMem ||
Do it only if necessary.
Also added a bit of profiling code to make sure that the
mapping code is efficient.
Added a lit test to simulate prelink-ed libraries.
Unfortunately, this test does not work with binutils-gold linker.
If gold is the default linker the test silently passes.
Also replaced
__has_feature(address_sanitizer)
with
__has_feature(address_sanitizer) || defined(__SANITIZE_ADDRESS__)
in two places.
Patch partially by Jakub Jelinek.
llvm-svn: 175263
In the current implementation AsanThread::GetFrameNameByAddr scans the
stack for a magic guard value to locate base address of the stack
frame. This is not reliable, especially on ARM, where the code that
stores this magic value has to construct it in a register from two
small intermediates; this register can then end up stored in a random
stack location in the prologue of another function.
With this change, GetFrameNameByAddr scans the shadow memory for the
signature of a left stack redzone instead. It is now possible to
remove the magic from the instrumentation pass for additional
performance gain. We keep it there for now just to make sure the new
algorithm does not fail in some corner case.
llvm-svn: 156710