The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
llvm-svn: 224134
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
llvm-svn: 223793
This tool lets us build LLVM components within the tree by setting up a
$GOPATH that resembles a tree fetched in the normal way with "go get".
It is intended that components such as the Go frontend will be built in-tree
using this tool.
Differential Revision: http://reviews.llvm.org/D5902
llvm-svn: 220462
This tool's job is to dump the vtables inside object files. It is
currently limited to MS ABI vf- and vb-tables but it will eventually
support Itanium-style v-tables as well.
Differential Revision: http://reviews.llvm.org/D4584
llvm-svn: 213903
Introducing llvm-profdata, a tool for merging profile data generated by
PGO instrumentation in clang.
- The name indicates a file extension of <name>.profdata. Eventually
profile data output by clang should be changed to that extension.
- llvm-profdata merges two profiles. However, the name is more general,
since it will likely pick up more tasks (such as summarizing a single
profile).
- llvm-profdata parses the current text-based format, but will be
updated once we settle on a binary format.
<rdar://problem/15949645>
llvm-svn: 201535
This provides rudimentary testing of the llvm-c api.
The following commands are implemented:
* --module-dump
Read bytecode from stdin - print ir
* --module-list-functions
Read bytecode from stdin - list summary of functions
* --module-list-globals
Read bytecode from stdin - list summary of globals
* --targets-list
List available targets
* --object-list-sections
Read object file from stdin - list sections
* --object-list-symbols
Read object file from stdin - list symbols (like nm)
* --disassemble
Read lines of triple, hex ascii machine code from stdin - print disassembly
* --calc
Read lines of name, rpn from stdin - print generated module ir
Differential-Revision: http://llvm-reviews.chandlerc.com/D1776
llvm-svn: 193233
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
llvm-svn: 191835
Archive files (.a) can have a symbol table indicating which object
files in them define which symbols. The purpose of this symbol table
is to speed up linking by allowing the linker the read only the .o
files it is actually going to use instead of having to parse every
object's symbol table.
LLVM's archive library currently supports a LLVM specific format for
such table. It is hard to see any value in that now that llvm-ld is
gone:
* System linkers don't use it: GNU ar uses the same plugin as the
linker to create archive files with a regular index. The OS X ar
creates no symbol table for IL files, I assume the linker just parses
all IL files.
* It doesn't interact well with archives having both IL and native objects.
* We probably don't want to be responsible for yet another archive
format variant.
This patch then:
* Removes support for creating and reading such index from lib/Archive.
* Remove llvm-ranlib, since there is nothing left for it to do.
We should in the future add support for regular indexes to llvm-ar for
both native and IL objects. When we do that, llvm-ranlib should be
reimplemented as a symlink to llvm-ar, as it is equivalent to "ar s".
llvm-svn: 184019
This is the second and last (2/2) part of a change that moves llvm-symbolizer to llvm/tools/, which will allow to build it
with both cmake and configure+make.
llvm-svn: 167723
llvm-ld is no longer useful and causes confusion and so it is being removed.
* Does not work very well on Windows because it must call a gcc like driver to
assemble and link.
* Has lots of hard coded paths which are wrong on many systems.
* Does not understand most of ld's options.
* Can be partially replaced by llvm-link | opt | {llc | as, llc -filetype=obj} |
ld, or fully replaced by Clang.
I know of no production use of llvm-ld, and hacking use should be
replaced by Clang's driver.
llvm-svn: 155147
* Add begin_dynamic_table() / end_dynamic_table() private interface to ELFObjectFile.
* Add begin_libraries_needed() / end_libraries_needed() interface to ObjectFile, for grabbing the list of needed libraries for a shared object or dynamic executable.
* Implement this new interface completely for ELF, leave stubs for COFF and MachO.
* Add 'llvm-readobj' tool for dumping ObjectFile information.
llvm-svn: 151785
Original commit message:
llvm-config: Replace with C++ version (was llvm-config-2).
- Reapply of r144300, with lots of fixes/migration easement in between.
llvm-svn: 145582
for now).
- Mostly complete except for the data that needs to come from the build system
or the dependencies.
- Has some small improvements from current llvm-config:
o Uses TargetRegistry directly to get some information.
o Designed to work correctly when used from a CMake build tree (relatively
untested currently) (although pcc fixed this recently for old llvm-config).
llvm-svn: 143616
Add llvm-cov skeleton. It has initial support to read coverage info generated by GCOVProfiling.cpp.
Today, you can do
prompt> clang a.c -ftest-coverage -fprofile-arcs -o a
prompt> ./a
prompt> llvm-cov -gcno a.gcno -gcda a.gcda
a.c
: #include "a.h"
:
: int main() {
: int i = 0;
: if (i) {
1: int j = 0;
1: j = 1;
1: } else {
: int k = 1;
: k = 2;
: }
1: return 0;
: }
:
:
llvm-svn: 140712
The problems that llvmc solved have largely been subsumed with the
tasks that the clang driver can accomplish, but llvmc lacks flexibility
and depends too heavily on the EOL'd llvm-gcc.
llvm-svn: 140093
This introduces a new library to LLVM: libDebugInfo. It will provide debug information
parsing to LLVM. Much of the design and some of the code is taken from the LLDB project.
It also contains an llvm-dwarfdump tool that can dump the abbrevs and DIEs from an
object file. It can be used to write tests for DWARF input and output easily.
llvm-svn: 139627
Add a bone-simple utility to load a MachO object into memory, look for
a function (main) in it, and run that function directly. This will be used
as a test and development platform for MC-JIT work regarding symbol resolution,
dynamic lookup, etc..
Code by Daniel Dunbar.
llvm-svn: 127885
parallel with the rest of the tools directory as it depends on Clang.
This patch was first applied in r125956 and subsequently reverted in
r125964 as it broke in-tree builds. Makefile.rules was fixed up in
r126070 to handle missing optional directories for the in-tree case,
so it should be safe now to bring this patch back in.
llvm-svn: 126071
Update the cmake and autoconf build system to compile polly
as a shared library if it is checked out into tools/polly. In case
polly is not checked out, nothing changes.
This models the way clang can be added to llvm if checked out to tools/clang.
Also rebuild configure.
Patch contributed by ether.
llvm-svn: 117755
- teach DifferenceEngine to unify successors of calls and invokes
in certain circumstances
- basic blocks actually don't have their own numbering; did that change?
- add llvm-diff to the Makefile and CMake build systems
llvm-svn: 111909