This dialect provides operations that can be used to control transformation of
the IR using a different portion of the IR. It refers to the IR being
transformed as payload IR, and to the IR guiding the transformation as
transform IR.
The main use case for this dialect is orchestrating fine-grain transformations
on individual operations or sets thereof. For example, it may involve finding
loop-like operations with specific properties (e.g., large size) in the payload
IR, applying loop tiling to those and only those operations, and then applying
loop unrolling to the inner loops produced by the previous transformations. As
such, it is not intended as a replacement for the pass infrastructure, nor for
the pattern rewriting infrastructure. In the most common case, the transform IR
will be processed and applied to payload IR by a pass. Transformations
expressed by the transform dialect may be implemented using the pattern
infrastructure or any other relevant MLIR component.
This dialect is designed to be extensible, that is, clients of this dialect are
allowed to inject additional operations into this dialect using the newly
introduced in this patch `TransformDialectExtension` mechanism. This allows the
dialect to avoid a dependency on the implementation of the transformation as
well as to avoid introducing dialect-specific transform dialects.
See https://discourse.llvm.org/t/rfc-interfaces-and-dialects-for-precise-ir-transformation-control/60927.
Reviewed By: nicolasvasilache, Mogball, rriddle
Differential Revision: https://reviews.llvm.org/D123135
Move the operations that correspond to LLVM IR intrinsics in a separate .td
file. This makes it easier to maintain the intrinsics and decreases the compile
time of LLVMDialect.cpp by ~25%.
Depends On D123310
Reviewed By: wsmoses, jacquesguan
Differential Revision: https://reviews.llvm.org/D123315
LLVM IR has introduced and is moving forward with the concept of opaque
pointers, i.e. pointer types that are not carrying around the pointee type.
Instead, memory-related operations indicate the type of the data being accessed
through the opaque pointer. Introduce the initial support for opaque pointers
in the LLVM dialect:
- `LLVMPointerType` to support omitting the element type;
- alloca/load/store/gep to support opaque pointers in their operands and
results; this requires alloca and gep to store the element type as an
attribute;
- memory-related intrinsics to support opaque pointers in their operands;
- translation to LLVM IR for the ops above is no longer using methods
deprecated in LLVM API due to the introduction of opaque pointers.
Unlike LLVM IR, MLIR can afford to support both opaque and non-opaque pointers
at the same time and simplify the transition. Translation to LLVM IR of MLIR
that involves opaque pointers requires the LLVMContext to be configured to
always use opaque pointers.
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D123310
This change adds three new operations to the GPU dialect: gpu.mma.sync,
gpu.mma.ldmatrix, and gpu.lane_id. The former two are meant to target
the lower level nvvm.mma.sync and nvvm.ldmatrix instructions, respectively.
Lowerings are added for the new GPU operations for conversion to
NVVM.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D123647
Support unrolling for vector.transpose following the same interface as
other vector unrolling ops.
Differential Revision: https://reviews.llvm.org/D123688
StrEnumAttr has been deprecated in favour of EnumAttr, a solution based on AttrDef (https://reviews.llvm.org/D115181). This patch removes StrEnumAttr, along with all the custom ODS logic required to handle it.
See https://discourse.llvm.org/t/psa-stop-using-strenumattr-do-use-enumattr/5710 on how to transition to EnumAttr. In short,
```
// Before
def MyEnumAttr : StrEnumAttr<"MyEnum", "", [
StrEnumAttrCase<"A">,
StrEnumAttrCase<"B">
]>;
// After (pick an integer enum of your choice)
def MyEnum : I32EnumAttr<"MyEnum", "", [
I32EnumAttrCase<"A", 0>,
I32EnumAttrCase<"B", 1>
]> {
// Don't generate a C++ class! We want to use the AttrDef
let genSpecializedAttr = 0;
}
// Define the AttrDef
def MyEnum : EnumAttr<MyDialect, MyEnum, "my_enum">;
```
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D120834
Enable specifying additional include directories to search. This is
consistent with what one can do with clangd (although there it is more
general compilation options) and Python LSP. We would in general expect
these to be provided by compilation database equivalent.
Differential Revision: https://reviews.llvm.org/D123474
This patch adds thread_local to llvm.mlir.global and adds translation for dso_local and addr_space to and from LLVM IR.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D123412
This revision replaces current type cast constant folder with a new common type cast constant folder function template.
It will cover all former folder and support fold the constant splat and vector.
Differential Revision: https://reviews.llvm.org/D123489
This change generalizes the fusion of `tensor.expand_shape` ->
`linalg.generic` op by collapsing to handle cases where only a subset
of the reassociations specified in the `tensor.expand_shape` are valid
to be collapsed.
The method that does the collapsing is refactored to allow it to be a
generic utility when required.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D123153
This patch adds tasking construct according to Section 2.10.1 of OpenMP 5.0
Reviewed By: peixin, kiranchandramohan, abidmalikwaterloo
Differential Revision: https://reviews.llvm.org/D123575
This patch removes inheritence from PresburgerSpace in IntegerRelation and
instead makes it a member of these classes.
This is required for three reasons:
- It prevents implicit casting to PresburgerSpace.
- Not all functions of PresburgerSpace need to be exposed by the deriving classes.
- IntegerRelation and IntegerPolyhedron are defined in a PresburgerSpace. It
makes more sense for the space to be a member instead of them inheriting from
a space.
Reviewed By: arjunp, ftynse
Differential Revision: https://reviews.llvm.org/D123585
With this change, there's going to be a clear distinction between LLVM
and MLIR pass maanger options (e.g. `-mlir-print-after-all` vs
`-print-after-all`). This change is desirable from the point of view of
projects that depend on both LLVM and MLIR, e.g. Flang.
For consistency, all pass manager options in MLIR are prefixed with
`mlir-`, even options that don't have equivalents in LLVM .
Differential Revision: https://reviews.llvm.org/D123495
Lookup iter_arg buffers using `lookupBuffer` instead of always creating a new `ToMemrefOp`. Also cast all yielded buffers (if necessary), regardless of whether they are an equivalent buffer or a new allocation.
Note: This should have been part of D123369.
Differential Revision: https://reviews.llvm.org/D123383
Switch CUDA runtime wrapper for GPU mem alloc/free to async. The
semantics of the GPU dialect ops (gpu.alloc/dealloc) and the wrappers it
lowered to (gpu-to-llvm) was for the async versions -- however, this was
being incorrectly mapped to cuMemAlloc/cuMemFree instead of
cuMemAllocAsync/cuMemFreeAsync.
Reviewed By: csigg
Differential Revision: https://reviews.llvm.org/D123482
This supports the threadprivate directive in OpenMP dialect following
the OpenMP 5.1 [2.21.2] standard. Also lowering to LLVM IR using OpenMP
IRBduiler.
Reviewed By: kiranchandramohan, shraiysh, arnamoy10
Differential Revision: https://reviews.llvm.org/D123350
Adding annotations on as-needed bases, currently only for memrefCopy, but in general all C API functions that take pointers to memory allocated/initialized inside the jit-compiled code must be annotated, to be able to run with msan.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123557