The current mechanism for identifying is a bit hacky and extremely adhoc, i.e. we explicit check 1-result, 0-operand, no side-effect, and always foldable and then assume that this is a constant. Adding a trait adds structure to this, and makes checking for a constant much more efficient as we can guarantee that all of these things have already been verified.
Differential Revision: https://reviews.llvm.org/D76020
Summary: In some situations the name of the attribute is not representable as a bare-identifier, this revision adds support for those cases by formatting the name as a string instead. This has the added benefit of removing the identifier regex from the verifier.
Differential Revision: https://reviews.llvm.org/D75973
This revision introduces the infrastructure for defining side-effects and attaching them to operations. This infrastructure allows for defining different types of side effects, that don't interact with each other, but use the same internal mechanisms. At the base of this is an interface that allows operations to specify the different effect instances that are exhibited by a specific operation instance. An effect instance is comprised of the following:
* Effect: The specific effect being applied.
For memory related effects this may be reading from memory, storing to memory, etc.
* Value: A specific value, either operand/result/region argument, the effect pertains to.
* Resource: This is a global entity that represents the domain within which the effect is being applied.
MLIR serves many different abstractions, which cover many different domains. Simple effects are may have very different context, for example writing to an in-memory buffer vs a database. This revision defines uses this infrastructure to define a set of initial MemoryEffects. The are effects that generally correspond to memory of some kind; Allocate, Free, Read, Write.
This set of memory effects will be used in follow revisions to generalize various parts of the compiler, and make others more powerful(e.g. DCE).
This infrastructure was originally proposed here:
https://groups.google.com/a/tensorflow.org/g/mlir/c/v2mNl4vFCUM
Differential Revision: https://reviews.llvm.org/D74439
Summary:
This revision removes all of the functionality related to successor operands on the core Operation class. This greatly simplifies a lot of handling of operands, as well as successors. For example, DialectConversion no longer needs a special "matchAndRewrite" for branching terminator operations.(Note, the existing method was also broken for operations with variadic successors!!)
This also enables terminator operations to define their own relationships with successor arguments, instead of the hardcoded "pass-through" behavior that exists today.
Differential Revision: https://reviews.llvm.org/D75318
This attribute details the segment sizes for operand groups within the operation. This revision add support for automatically populating this attribute in the declarative parser.
Differential Revision: https://reviews.llvm.org/D75315
A previous commit added support for integer signedness in C++
IntegerType. This change introduces ODS definitions for
integer types and integer (element) attributes w.r.t. signedness.
This commit also updates various existing definitions' descriptions
to mention signless where suitable to make it more clear.
Positive and non-negative integer attributes are removed to avoid
the explosion of subclasses. Instead, one should use more atmoic
constraints together with Confined to model that. For example,
`Confined<..., [IntPositive]>`.
Differential Revision: https://reviews.llvm.org/D75610
Summary:
This adds an rsqrt op to the standard dialect, and lowers
it as 1 / sqrt to the LLVM dialect.
Differential Revision: https://reviews.llvm.org/D75353
Summary: This allows for attaching the attribute to CmpF as a proper argument, and thus enables the removal of a bunch of c++ code.
Differential Revision: https://reviews.llvm.org/D75539
Summary: For example, DenseElementsAttr currently does not properly round-trip unsigned integer values.
Differential Revision: https://reviews.llvm.org/D75374
Summary: bfloat16 is stored internally as a double, so we can't direct use Type::getIntOrFloatBitWidth.
Differential Revision: https://reviews.llvm.org/D75133
Summary:
The RFC for this op is here: https://llvm.discourse.group/t/rfc-add-std-atomic-rmw-op/489
The std.atmomic_rmw op provides a way to support read-modify-write
sequences with data race freedom. It is intended to be used in the lowering
of an upcoming affine.atomic_rmw op which can be used for reductions.
A lowering to LLVM is provided with 2 paths:
- Simple patterns: llvm.atomicrmw
- Everything else: llvm.cmpxchg
Differential Revision: https://reviews.llvm.org/D74401
This revision add support for formatting successor variables in a similar way to operands, attributes, etc.
Differential Revision: https://reviews.llvm.org/D74789
This allows for injecting type constraints that are not direct 1-1 mappings, for example when one type is equal to the element type of another. This allows for moving over several more parsers to the declarative form.
Differential Revision: https://reviews.llvm.org/D74648
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
Summary: DenseElementsAttr is used to store tensor data, which in some cases can become extremely large(100s of mb). In these cases it is much more efficient to format the data as a string of hex values instead.
Differential Revision: https://reviews.llvm.org/D74922
Summary:
This trait takes three arguments: lhs, rhs, transformer. It verifies that the type of 'rhs' matches the type of 'lhs' when the given 'transformer' is applied to 'lhs'. This allows for adding constraints like: "the type of 'a' must match the element type of 'b'". A followup revision will add support in the declarative parser for using these equality constraints to port more c++ parsers to the declarative form.
Differential Revision: https://reviews.llvm.org/D74647
Defines a tablegen class RankedIntElementsAttr. This is an integer
version of RankedFloatElementsAttr.
Differential Revision: https://reviews.llvm.org/D73764
Summary: In some edge cases the default APFloat printer will generate something that we can't parse back in. In these cases, fallback to using hex instead.
Differential Revision: https://reviews.llvm.org/D74181
Summary: This pass deletes all symbols that are found to be unreachable. This is done by computing the set of operations that are known to be live, propagating that liveness to other symbols, and then deleting all symbols that are not within this live set.
Differential Revision: https://reviews.llvm.org/D72482
Summary:
This was previously disabled as FunctionType TypeAttrs could not be roundtripped in the IR. This has been fixed, so we can now generically print FuncOp.
Depends On D72429
Reviewed By: jpienaar, mehdi_amini
Differential Revision: https://reviews.llvm.org/D72642
Summary: bfloat16 doesn't have a valid APFloat format, so we have to use double semantics when storing it. This change makes sure that hexadecimal values can be round-tripped properly given this fact.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72667
Summary:
The visibility defines the structural reachability of the symbol within the IR. Symbols can define one of three visibilities:
* Public
The symbol \may be accessed from outside of the visible IR. We cannot assume that we can observe all of the uses of this symbol.
* Private
The symbol may only be referenced from within the operations in the current symbol table, via SymbolRefAttr.
* Nested
The symbol may be referenced by operations in symbol tables above the current symbol table, as long as each symbol table parent also defines a non-private symbol. This allows or referencing the symbol from outside of the defining symbol table, while retaining the ability for the compiler to see all uses.
These properties help to reason about the properties of a symbol, and will be used in a follow up to implement a dce pass on dead symbols.
A few examples of what this would look like in the IR are shown below:
module @public_module {
// This function can be accessed by 'live.user'
func @nested_function() attributes { sym_visibility = "nested" }
// This function cannot be accessed outside of 'public_module'
func @private_function() attributes { sym_visibility = "private" }
}
// This function can only be accessed from within this module.
func @private_function() attributes { sym_visibility = "private" }
// This function may be referenced externally.
func @public_function()
"live.user"() {uses = [@public_module::@nested_function,
@private_function,
@public_function]} : () -> ()
Depends On D72043
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72044
Summary: This updates the use list algorithms to support querying from a specific symbol, allowing for the collection and detection of nested references. This works by walking the parent "symbol scopes" and applying the existing algorithm at each level.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72042
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
Summary: Introduce m_Constant() which allows matching a constant operation without forcing the user also to capture the attribute value.
Differential Revision: https://reviews.llvm.org/D72397
Rename the 'shlis' operation in the standard dialect to 'shift_left'. Add tests
for this operation (these have been missing so far) and add a lowering to the
'shl' operation in the LLVM dialect.
Add also 'shift_right_signed' (lowered to LLVM's 'ashr') and 'shift_right_unsigned'
(lowered to 'lshr').
The original plan was to name these operations 'shift.left', 'shift.right.signed'
and 'shift.right.unsigned'. This works if the operations are prefixed with 'std.'
in MLIR assembly. Unfortunately during import the short form is ambigous with
operations from a hypothetical 'shift' dialect. The best solution seems to omit
dots in standard operations for now.
Closestensorflow/mlir#226
PiperOrigin-RevId: 286803388
This is the block argument equivalent of the existing `getAsmResultNames` hook.
Closestensorflow/mlir#329
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/329 from plaidml:flaub-region-arg-names fc7876f2d1335024e441083cd25263fd6247eb7d
PiperOrigin-RevId: 286523299
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
Add one more simplification for floordiv and mod affine expressions.
Examples:
(2*d0 + 1) floordiv 2 is simplified to d0
(8*d0 + 4*d1 + d2) floordiv 4 simplified to 4*d0 + d1 + d2 floordiv 4.
etc.
Similarly, (4*d1 + 1) mod 2 is simplified to 1,
(2*d0 + 8*d1) mod 8 simplified to 2*d0 mod 8.
Change getLargestKnownDivisor to return int64_t to be consistent and
to avoid casting at call sites (since the return value is used in expressions
of int64_t/index type).
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#202
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/202 from bondhugula:affine b13fcb2f1c00a39ca5434613a02408e085a80e77
PiperOrigin-RevId: 284866710
This CL adds support for building matchers recursively.
The following matchers are provided:
1. `m_any()` can match any value
2. `m_val(Value *)` binds to a value and must match it
3. `RecursivePatternMatcher<OpType, Matchers...>` n-arity pattern that matches `OpType` and whose operands must be matched exactly by `Matchers...`.
This allows building expression templates for patterns, declaratively, in a very natural fashion.
For example pattern `p9` defined as follows:
```
auto mul_of_muladd = m_Op<MulFOp>(m_Op<MulFOp>(), m_Op<AddFOp>());
auto mul_of_anyadd = m_Op<MulFOp>(m_any(), m_Op<AddFOp>());
auto p9 = m_Op<MulFOp>(m_Op<MulFOp>(
mul_of_muladd, m_Op<MulFOp>()),
m_Op<MulFOp>(mul_of_anyadd, mul_of_anyadd));
```
Successfully matches `%6` in:
```
%0 = addf %a, %b: f32
%1 = addf %a, %c: f32 // matched
%2 = addf %c, %b: f32
%3 = mulf %a, %2: f32 // matched
%4 = mulf %3, %1: f32 // matched
%5 = mulf %4, %4: f32 // matched
%6 = mulf %5, %5: f32 // matched
```
Note that 0-ary matchers can be used as leaves in place of n-ary matchers. This alleviates from passing explicit `m_any()` leaves.
In the future, we may add extra patterns to specify that operands may be matched in any order.
PiperOrigin-RevId: 284469446
I found that when running crash reproducers, the elided elementsattr's
would prevent parsing the IR repro. I found myself manually going and
replacing the "..." with some valid IR.
With this change, we now print elided attrs as `opaque<"", "0xDEADBEEF">`
to clearly delineate them as being elided while still being parseable.
PiperOrigin-RevId: 283781806
As described in the documentation, ViewOp is expected to take an optional
dynamic offset followed by a list of dynamic sizes. However, the ViewOp parser
did not include a check for the offset being a single value and accepeted a
list of values instead.
Furthermore, several tests have been exercising the wrong syntax of a ViewOp,
passing multiple values to the dyanmic stride list, which was not caught by the
parser. The trailing values could have been erronously interpreted as dynamic
sizes. This is likely due to resyntaxing of the ViewOp, with the previous
syntax taking the list of sizes before the offset. Update the tests to use the
syntax with the offset preceding the sizes.
Worse, the conversion of ViewOp to the LLVM dialect assumed the wrong order of
operands with offset in the trailing position, and erronously relied on the
permissive parsing that interpreted trailing dynamic offset values as leading
dynamic sizes. Fix the lowering to use the correct order of operands.
PiperOrigin-RevId: 283532506
Certain operations can have multiple variadic operands and their size
relationship is not always known statically. For such cases, we need
a per-op-instance specification to divide the operands into logical
groups or segments. This can be modeled by attributes.
This CL introduces C++ trait AttrSizedOperandSegments for operands and
AttrSizedResultSegments for results. The C++ trait just guarantees
such size attribute has the correct type (1D vector) and values
(non-negative), etc. It serves as the basis for ODS sugaring that
with ODS argument declarations we can further verify the number of
elements match the number of ODS-declared operands and we can generate
handy getter methods.
PiperOrigin-RevId: 282467075
Memref_cast supports cast from static shape to dynamic shape
memrefs. The same should be true for strides as well, i.e a memref
with static strides can be casted to a memref with dynamic strides.
PiperOrigin-RevId: 282381862
Due to legacy reasons, a newline character followed by two spaces was always
inserted before the attributes of the function Op in pretty form. This breaks
formatting when functions are nested in some other operations. Don't print the
newline and just put the attributes on the same line, which is also more
consistent with module Op. Line breaking aware of indentation can be introduced
separately into the parser if deemed useful.
PiperOrigin-RevId: 281721793
The current SubViewOp specification allows for either all offsets,
shape and stride to be dynamic or all of them to be static. There are
opportunities for more fine-grained canonicalization based on which of
these are static. For example, if the sizes are static, the result
memref is of static shape. The specification of SubViewOp is modified
to allow on or more of offsets, shapes and strides to be statically
specified. The verification is updated to ensure that the result type
of the subview op is consistent with which of these are static and
which are dynamic.
PiperOrigin-RevId: 281560457
This interface provides more fine-grained hooks into the AsmPrinter than the dialect interface, allowing for operations to define the asm name to use for results directly on the operations themselves. The hook is also expanded to enable defining named result "groups". Get a special name to use when printing the results of this operation.
The given callback is invoked with a specific result value that starts a
result "pack", and the name to give this result pack. To signal that a
result pack should use the default naming scheme, a None can be passed
in instead of the name.
For example, if you have an operation that has four results and you want
to split these into three distinct groups you could do the following:
setNameFn(getResult(0), "first_result");
setNameFn(getResult(1), "middle_results");
setNameFn(getResult(3), ""); // use the default numbering.
This would print the operation as follows:
%first_result, %middle_results:2, %0 = "my.op" ...
PiperOrigin-RevId: 281546873
This CL moves VectorOps to Tablegen and cleans up the implementation.
This is almost NFC but 2 changes occur:
1. an interface change occurs in the padding value specification in vector_transfer_read:
the value becomes non-optional. As a shortcut we currently use %f0 for all paddings.
This should become an OpInterface for vectorization in the future.
2. the return type of vector.type_cast is trivial and simplified to `memref<vector<...>>`
Relevant roundtrip and invalid tests that used to sit in core are moved to the vector dialect.
The op documentation is moved to the .td file.
PiperOrigin-RevId: 280430869
Expand local scope printing to skip printing aliases as aliases are printed out at the top of a module and may not be part of the output generated by local scope print.
PiperOrigin-RevId: 280278617
This is a quite complex operation that users are likely to attempt to write
themselves and get wrong (citation: users=me).
Ideally, we could pull this into FunctionLike, but for now, the
FunctionType rewriting makes it FuncOp specific. We would need some hook
for rewriting the function type (which for LLVM's func op, would need to
rewrite the underlying LLVM type).
PiperOrigin-RevId: 280234164
The current implementation silently fails if the '@' identifier isn't present, making it similar to the 'optional' parse methods. This change renames the current implementation to 'Optional' and adds a new 'parseSymbolName' that emits an error.
PiperOrigin-RevId: 280214610
It is often helpful to inspect the operation that the error/warning/remark/etc. originated from, especially in the context of debugging or in the case of a verifier failure. This change adds an option 'mlir-print-op-on-diagnostic' that attaches the operation as a note to any diagnostic that is emitted on it via Operation::emit(Error|Warning|Remark). In the case of an error, the operation is printed in the generic form.
PiperOrigin-RevId: 280021438
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
This operation is a companion operation to the std.view operation added as proposed in "Updates to the MLIR MemRefType" RFC.
PiperOrigin-RevId: 279766410
This simplifies the implementation quite a bit, and removes the need for explicit string munging. One change is made to some of the enum elements of SPV_DimAttr to ensure that they are proper identifiers; The string form is now prefixed with 'Dim'.
PiperOrigin-RevId: 278027132
This constraint can be used to limit a SymbolRefAttr to point
to a specific kind of op in the closest parent with a symbol table.
PiperOrigin-RevId: 278001364
For ops that recursively re-enter the parser to parse an operation (such as
ops with a "wraps" pretty form), this ensures that the wrapped op will parse
its location, which can then be used for the locations of the wrapping op
and any other implicit ops.
PiperOrigin-RevId: 277152636
This allows for parsing things like:
%name_1, %name_2:5, %name_3:2 = "my.op" ...
This is useful for operations that have groups of variadic result values. The
total number of results is expected to match the number of results defined by
the operation.
PiperOrigin-RevId: 276703280
This simplifies defining expected-* directives when there are multiple that apply to the next or previous line. @below applies the directive to the next non-designator line, i.e. the next line that does not contain an expected-* designator. @above applies to the previous non designator line.
Examples:
// Expect an error on the next line that does not contain a designator.
// expected-remark@below {{remark on function below}}
// expected-remark@below {{another remark on function below}}
func @bar(%a : f32)
// Expect an error on the previous line that does not contain a designator.
func @baz(%a : f32)
// expected-remark@above {{remark on function above}}
// expected-remark@above {{another remark on function above}}
PiperOrigin-RevId: 276369085
This allows dialect-specific attributes to be attached to func results. (or more specifically, FunctionLike ops).
For example:
```
func @f() -> (i32 {my_dialect.some_attr = 3})
```
This attaches my_dialect.some_attr with value 3 to the first result of func @f.
Another more complex example:
```
func @g() -> (i32, f32 {my_dialect.some_attr = "foo", other_dialect.some_other_attr = [1,2,3]}, i1)
```
Here, the second result has two attributes attached.
PiperOrigin-RevId: 275564165
'_' is used frequently enough as the separator of words in symbols.
We should allow it in dialect symbols when considering pretty printing.
Also updated LangRef.md regarding pretty form.
PiperOrigin-RevId: 275312494
1. Rename test ops referencing operand to index from 0 consistent with how we index elsewhere.
2. Don't limit type checking that functions for all shaped types to only tensors.
3. Don't limit (element) type checking functions and add tests for scalars.
4. Remove SSA values that don't do anything.
PiperOrigin-RevId: 273917608
Currently SameOperandsAndResultShape trait allows operands to have tensor<*xf32> and tensor<2xf32> but doesn't allow tensor<?xf32> and tensor<10xf32>.
Also, use the updated shape compatibility helper function in TensorCastOp::areCastCompatible method.
PiperOrigin-RevId: 273658336
This enhances the symbol table utility methods to handle the case where an unknown operation may define a symbol table. When walking symbols, we now collect all symbol uses before allowing the user to iterate. This prevents the user from assuming that all symbols are actually known before performing a transformation.
PiperOrigin-RevId: 273651963
The restriction that symbols can only have identifier names is arbitrary, and artificially limits the names that a symbol may have. This change adds support for parsing and printing symbols that don't fit in the 'bare-identifier' grammar by printing the reference in quotes, e.g. @"0_my_reference" can now be used as a symbol name.
PiperOrigin-RevId: 273644768
MLIR uses symbol references to model references to many global entities, such as functions/variables/etc. Before this change, there is no way to actually reason about the uses of such entities. This change provides a walker for symbol references(via SymbolTable::walkSymbolUses), as well as 'use_empty' support(via SymbolTable::symbol_use_empty). It also resolves some deficiencies in the LangRef definition of SymbolRefAttr, namely the restrictions on where a SymbolRefAttr can be stored, ArrayAttr and DictionaryAttr, and the relationship with operations containing the SymbolTable trait.
PiperOrigin-RevId: 273549331
Some modules may have extremely large ElementsAttrs, which makes debugging involving IR dumping extremely slow and painful. This change adds a flag that will elide ElementsAttrs with a "large"(as defined by the user) number of elements by printing "..." instead of the element data.
PiperOrigin-RevId: 273413100
See RFC: https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/xE2IzfhE3Wg.
Opaque location stores two pointers, one of them points to some data structure that is external to MLIR, and the other one is unique for each type and represents type id of that data structure. OpaqueLoc also stores an optional location that can be used if the first one is not suitable.
OpaqueLoc is managed similar to FileLineColLoc. It is passed around by MLIR transformations and can be used in compound locations like CallSiteLoc.
PiperOrigin-RevId: 273266510
This allows confirming that a scalar argument has the same element type as a shaped one. It's easy to validate a type is shaped on its own if that's desirable, so this shouldn't make that use case harder. This matches the behavior of other traits that operate on element type (e.g. AllElementTypesMatch). Also this makes the code simpler because now we just use getElementTypeOrSelf.
Verified that all uses in core already check the type is shaped in another way.
PiperOrigin-RevId: 273068507
1. Rename a few ops to make it clear they operate on *element* types.
2. Remove unused and generic operand and result ODS names (e.g. $res, $arg, $input). These are just clutter and don't make the op definitions any clearer.
3. Give test cases with duplicate names clearer names.
4. Add missing test case for no operands in SameOperandAndResultElementType.
PiperOrigin-RevId: 273067933
This CL implements the last remaining bit of the [strided memref proposal](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
The syntax is a bit more explicit than what was originally proposed and resembles:
`memref<?x?xf32, offset: 0 strides: [?, 1]>`
Nonnegative strides and offsets are currently supported. Future extensions will include negative strides.
This also gives a concrete example of syntactic sugar for the ([RFC] Proposed Changes to MemRef and Tensor MLIR Types)[https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/-wKHANzDNTg].
The underlying implementation still uses AffineMap layout.
PiperOrigin-RevId: 272717437
Modules are now Ops and, as such, can be nested. They do not produce an SSA
value so there is no possibility to refer to them in the IR. Introduce support
for symbol names attached to the module Op so that it can be referred to using
SymbolRefAttrs. The name is optional, for example the implicit top-level module
does not have a name.
PiperOrigin-RevId: 272671600
As specified in the MLIR language reference and rationale documents, `memref`
types should not be allowed to have `index` as element types. As observed in
https://groups.google.com/a/tensorflow.org/forum/#!msg/mlir/P49hVWqTMNc/nW89a4i_AgAJ
this restriction was lifted when canonicalization unit tests for affine
operations were introduced, without sufficient motivation to lift the
restriction itself. The test in question can be trivially rewritten (return
the value from a function instead of storing it to prevent DCE from removing
the producer operation) and the restriction put back in place.
If `memref<...x index>` is relevant for some use cases, the relaxation of the
type system can be implemented separately with appropriate modifications to the
documentation.
PiperOrigin-RevId: 272607043
- also remove stale terminology/references in docs
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#148
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/148 from bondhugula:cleanup e846b641a3c2936e874138aff480a23cdbf66591
PiperOrigin-RevId: 271618279
- introduce splat op in standard dialect (currently for int/float/index input
type, output type can be vector or statically shaped tensor)
- implement LLVM lowering (when result type is 1-d vector)
- add constant folding hook for it
- while on Ops.cpp, fix some stale names
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#141
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/141 from bondhugula:splat 48976a6aa0a75be6d91187db6418de989e03eb51
PiperOrigin-RevId: 270965304
The existing logic to parse spirv::StructTypes is very brittle. This
change simplifies the parsing logic a lot. The simplification also
allows for memberdecorations to be separated by commas instead of
spaces (which was an artifact of the existing parsing logic). The
change also needs a modification to mlir::parseType to return the
number of chars parsed. Adding a new parseType method to do so.
Also allow specification of spirv::StructType with no members.
PiperOrigin-RevId: 270739672
This adds sign- and zero-extension and truncation of integer types to the
standard dialects. This allows to perform integer type conversions without
having to go to the LLVM dialect and introduce custom type casts (between
standard and LLVM integer types).
Closestensorflow/mlir#134
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/134 from ombre5733:sext-zext-trunc-in-std c7657bc84c0ca66b304e53ec03797e09152e4d31
PiperOrigin-RevId: 270479722
This CL adds a new FloatElementsAttr definition to ODS for float
elements attributes of a certain type.
Tests are added to show both verification and how to use it in patterns.
PiperOrigin-RevId: 270455487
This modifies DominanceInfo::properlyDominates(Value *value, Operation *op) to return false if the value is defined by a parent operation of 'op'. This prevents using values defined by the parent operation from within any child regions.
PiperOrigin-RevId: 269934920
This is useful in several cases, for example a user may want to sugar the syntax of a string(as we do with custom operation syntax), or avoid many nested ifs for parsing a set of known keywords.
PiperOrigin-RevId: 269695451