Commit Graph

70 Commits

Author SHA1 Message Date
Francis Visoiu Mistrih a8a83d150f [CodeGen] Use MachineOperand::print in the MIRPrinter for MO_Register.
Work towards the unification of MIR and debug output by refactoring the
interfaces.

For MachineOperand::print, keep a simple version that can be easily called
from `dump()`, and a more complex one which will be called from both the
MIRPrinter and MachineInstr::print.

Add extra checks inside MachineOperand for detached operands (operands
with getParent() == nullptr).

https://reviews.llvm.org/D40836

* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/kill: ([^ ]+) ([^ ]+)<def> ([^ ]+)/kill: \1 def \2 \3/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/kill: ([^ ]+) ([^ ]+) ([^ ]+)<def>/kill: \1 \2 def \3/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/kill: def ([^ ]+) ([^ ]+) ([^ ]+)<def>/kill: def \1 \2 def \3/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/<def>//g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<kill>/killed \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-use,kill>/implicit killed \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<dead>/dead \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<def[ ]*,[ ]*dead>/dead \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-def[ ]*,[ ]*dead>/implicit-def dead \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-def>/implicit-def \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<imp-use>/implicit \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<internal>/internal \1/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" -o -name "*.s" \) -type f -print0 | xargs -0 sed -i '' -E 's/([^ ]+)<undef>/undef \1/g'

llvm-svn: 320022
2017-12-07 10:40:31 +00:00
Francis Visoiu Mistrih 25528d6de7 [CodeGen] Unify MBB reference format in both MIR and debug output
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.

The MIR printer prints the IR name of a MBB only for block definitions.

* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix

Differential Revision: https://reviews.llvm.org/D40422

llvm-svn: 319665
2017-12-04 17:18:51 +00:00
Francis Visoiu Mistrih 9d7bb0cb40 [CodeGen] Print register names in lowercase in both MIR and debug output
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.

* Only debug printing is affected. It now follows MIR.

Differential Revision: https://reviews.llvm.org/D40417

llvm-svn: 319187
2017-11-28 17:15:09 +00:00
Simon Pilgrim 9a6b720f4f [X86] Regenerate select tests
llvm-svn: 317571
2017-11-07 13:21:02 +00:00
Alexander Ivchenko 34498ba052 [X86] Combining CMOVs with [ANY,SIGN,ZERO]_EXTEND for cases where CMOV has constant arguments
Combine CMOV[i16]<-[SIGN,ZERO,ANY]_EXTEND to [i32,i64] into CMOV[i32,i64].
One example of where it is useful is:

before (20 bytes)
    <foo>:
    test $0x1,%dil
    mov $0x307e,%ax
    mov $0xffff,%cx
    cmovne %ax,%cx
    movzwl %cx,%eax
    retq

after (18 bytes)
    <foo>:
    test $0x1,%dil
    mov $0x307e,%ecx
    mov $0xffff,%eax
    cmovne %ecx,%eax
    retq

Reviewers: craig.topper, aaboud, spatel, RKSimon, zvi

Reviewed By: spatel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D36711

llvm-svn: 313982
2017-09-22 13:21:39 +00:00
Nikolai Bozhenov 84af99b3b1 [X86FixupBWInsts] More precise register liveness if no <imp-use> on MOVs.
Summary:
Subregister liveness tracking is not implemented for X86 backend, so
sometimes the whole super register is said to be live, when only a
subregister is really live. That might happen if the def and the use
are located in different MBBs, see added fixup-bw-isnt.mir test.

However, using knowledge of the specific instructions handled by the
bw-fixup-pass we can get more precise liveness information which this
change does.

Reviewers: MatzeB, DavidKreitzer, ab, andrew.w.kaylor, craig.topper

Reviewed By: craig.topper

Subscribers: n.bozhenov, myatsina, llvm-commits, hiraditya

Patch by Andrei Elovikov <andrei.elovikov@intel.com>

Differential Revision: https://reviews.llvm.org/D37559

llvm-svn: 313524
2017-09-18 10:17:59 +00:00
Balaram Makam 42adadfca0 Re-land MachineInstr: Reason locally about some memory objects before going to AA.
Summary:
Reverts r311008 to reinstate r310825 with a fix.

Refine alias checking for pseudo vs value to be conservative.
This fixes the original failure in builtbot unittest SingleSource/UnitTests/2003-07-09-SignedArgs.

Reviewers: hfinkel, nemanjai, efriedma

Reviewed By: efriedma

Subscribers: bjope, mcrosier, nhaehnle, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D36900

llvm-svn: 312126
2017-08-30 14:57:12 +00:00
Chandler Carruth 8ac488b161 [x86] Fix an amazing goof in the handling of sub, or, and xor lowering.
The comment for this code indicated that it should work similar to our
handling of add lowering above: if we see uses of an instruction other
than flag usage and store usage, it tries to avoid the specialized
X86ISD::* nodes that are designed for flag+op modeling and emits an
explicit test.

Problem is, only the add case actually did this. In all the other cases,
the logic was incomplete and inverted. Any time the value was used by
a store, we bailed on the specialized X86ISD node. All of this appears
to have been historical where we had different logic here. =/

Turns out, we have quite a few patterns designed around these nodes. We
should actually form them. I fixed the code to match what we do for add,
and it has quite a positive effect just within some of our test cases.
The only thing close to a regression I see is using:

  notl %r
  testl %r, %r

instead of:

  xorl -1, %r

But we can add a pattern or something to fold that back out. The
improvements seem more than worth this.

I've also worked with Craig to update the comments to no longer be
actively contradicted by the code. =[ Some of this still remains
a mystery to both Craig and myself, but this seems like a large step in
the direction of consistency and slightly more accurate comments.

Many thanks to Craig for help figuring out this nasty stuff.

Differential Revision: https://reviews.llvm.org/D37096

llvm-svn: 311737
2017-08-25 00:34:07 +00:00
Geoff Berry 4e38e02e6f Revert "[MachineCopyPropagation] Extend pass to do COPY source forwarding"
This reverts commit r311038.

Several buildbots are breaking, and at least one appears to be due to
the forwarding of physical regs enabled by this change.  Reverting while
I investigate further.

llvm-svn: 311062
2017-08-17 04:04:11 +00:00
Geoff Berry 87f8d25150 [MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.

This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.

Reviewers: qcolombet, javed.absar, MatzeB, jonpa

Subscribers: jyknight, nemanjai, llvm-commits, nhaehnle, mcrosier, mgorny

Differential Revision: https://reviews.llvm.org/D30751

llvm-svn: 311038
2017-08-16 20:50:01 +00:00
Sanjay Patel 169dae70a6 [x86] use more shift or LEA for select-of-constants (2nd try)
The previous rev (r310208) failed to account for overflow when subtracting the
constants to see if they're suitable for shift/lea. This version add a check
for that and more test were added in r310490.

We can convert any select-of-constants to math ops:
http://rise4fun.com/Alive/d7d

For this patch, I'm enhancing an existing x86 transform that uses fake multiplies
(they always become shl/lea) to avoid cmov or branching. The current code misses
cases where we have a negative constant and a positive constant, so this is just
trying to plug that hole.

The DAGCombiner diff prevents us from hitting a terrible inefficiency: we can start
with a select in IR, create a select DAG node, convert it into a sext, convert it
back into a select, and then lower it to sext machine code.

Some notes about the test diffs:

1. 2010-08-04-MaskedSignedCompare.ll - We were creating control flow that didn't exist in the IR.
2. memcmp.ll - Choose -1 or 1 is the case that got me looking at this again. We could avoid the 
   push/pop in some cases if we used 'movzbl %al' instead of an xor on a different reg? That's a 
   post-DAG problem though.
3. mul-constant-result.ll - The trade-off between sbb+not vs. setne+neg could be addressed if
   that's a regression, but those would always be nearly equivalent.
4. pr22338.ll and sext-i1.ll - These tests have undef operands, so we don't actually care about these diffs.
5. sbb.ll - This shows a win for what is likely a common case: choose -1 or 0.
6. select.ll - There's another borderline case here: cmp+sbb+or vs. test+set+lea? Also, sbb+not vs. setae+neg shows up again.
7. select_const.ll - These are motivating cases for the enhancement; replace cmov with cheaper ops.

Assembly differences between movzbl and xor to avoid a partial reg stall are caused later by the X86 Fixup SetCC pass.

Differential Revision: https://reviews.llvm.org/D35340

llvm-svn: 310717
2017-08-11 15:44:14 +00:00
Sanjay Patel 807f92b8ff [x86] revert r310208 to investigate test-suite failures (PR34105 / PR34097)
llvm-svn: 310264
2017-08-07 15:47:48 +00:00
Sanjay Patel a923c2ee95 [x86] use more shift or LEA for select-of-constants
We can convert any select-of-constants to math ops:
http://rise4fun.com/Alive/d7d

For this patch, I'm enhancing an existing x86 transform that uses fake multiplies 
(they always become shl/lea) to avoid cmov or branching. The current code misses 
cases where we have a negative constant and a positive constant, so this is just 
trying to plug that hole.

The DAGCombiner diff prevents us from hitting a terrible inefficiency: we can start 
with a select in IR, create a select DAG node, convert it into a sext, convert it 
back into a select, and then lower it to sext machine code.

Some notes about the test diffs:

1. 2010-08-04-MaskedSignedCompare.ll - We were creating control flow that didn't exist in the IR.
2. memcmp.ll - Choose -1 or 1 is the case that got me looking at this again. I 
   think we could avoid the push/pop in some cases if we used 'movzbl %al' instead of an xor on 
   a different reg? That's a post-DAG problem though.
3. mul-constant-result.ll - The trade-off between sbb+not vs. setne+neg could be addressed if 
   that's a regression, but I think those would always be nearly equivalent.
4. pr22338.ll and sext-i1.ll - These tests have undef operands, so I don't think we actually care about these diffs.
5. sbb.ll - This shows a win for what I think is a common case: choose -1 or 0.
6. select.ll - There's another borderline case here: cmp+sbb+or vs. test+set+lea? Also, sbb+not vs. setae+neg shows up again.
7. select_const.ll - These are motivating cases for the enhancement; replace cmov with cheaper ops.

Assembly differences between movzbl and xor to avoid a partial reg stall are caused later by the X86 Fixup SetCC pass.

Differential Revision: https://reviews.llvm.org/D35340

llvm-svn: 310208
2017-08-06 16:27:07 +00:00
Sanjay Patel 15748d239e [x86] transform vector inc/dec to use -1 constant (PR33483)
Convert vector increment or decrement to sub/add with an all-ones constant:

add X, <1, 1...> --> sub X, <-1, -1...>
sub X, <1, 1...> --> add X, <-1, -1...>

The all-ones vector constant can be materialized using a pcmpeq instruction that is 
commonly recognized as an idiom (has no register dependency), so that's better than 
loading a splat 1 constant.

AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better
way to produce 512 one-bits.

The general advantages of this lowering are:
1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, 
   so in theory, this could be better for perf, but...

2. That seems unlikely to affect any OOO implementation, and I can't measure any real 
   perf difference from this transform on Haswell or Jaguar, but...

3. It doesn't look like it from the diffs, but this is an overall size win because we 
   eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting 
   a scalar load (which might itself be a bug), then we're replacing a scalar constant 
   load + broadcast with a single cheap op, so that should always be smaller/better too.

4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 
   and psub x, -1, so we should use that form for +1 too because we can. If there's some
   reason to favor a constant load on some CPU, let's make the reverse transform for all
   of these cases (either here in the DAG or in a later machine pass).

This should fix:
https://bugs.llvm.org/show_bug.cgi?id=33483

Differential Revision: https://reviews.llvm.org/D34336

llvm-svn: 306289
2017-06-26 14:19:26 +00:00
Simon Pilgrim 46dd55f1e1 [X86][SSE] Change BUILD_VECTOR interleaving ordering to improve coalescing/combine opportunities
We currently generate BUILD_VECTOR as a tree of UNPCKL shuffles of the same type:

e.g. for v4f32:

Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
      : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>

The issue is because we are not placing sequential vector elements together early enough, we fail to recognise many combinable patterns - consecutive scalar loads, extractions etc.

Instead, this patch unpacks progressively larger sequential vector elements together:

e.g. for v4f32:

Step 1: unpcklps 0, 2 ==> X: <?, ?, 1, 0>
      : unpcklps 1, 3 ==> Y: <?, ?, 3, 2>
Step 2: unpcklpd X, Y ==>    <3, 2, 1, 0>

This does mean that we are creating UNPCKL shuffle of different value types, but the relevant combines that benefit from this are quite capable of handling the additional BITCASTs that are now included in the shuffle tree.

Differential Revision: https://reviews.llvm.org/D33864

llvm-svn: 304688
2017-06-04 20:12:04 +00:00
Amaury Sechet 5746e7356a Update select.ll expected results. NFC
llvm-svn: 304557
2017-06-02 16:07:43 +00:00
Dehao Chen 6b737ddce7 Add LiveRangeShrink pass to shrink live range within BB.
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.

Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb

Reviewed By: MatzeB, andreadb

Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32563

llvm-svn: 304371
2017-05-31 23:25:25 +00:00
Hans Wennborg b00ffd8cb7 Revert r302938 "Add LiveRangeShrink pass to shrink live range within BB."
This also reverts follow-ups r303292 and r303298.

It broke some Chromium tests under MSan, and apparently also internal
tests at Google.

llvm-svn: 303369
2017-05-18 18:50:05 +00:00
Dehao Chen 65dd23e273 Add LiveRangeShrink pass to shrink live range within BB.
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.

Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb

Reviewed By: MatzeB, andreadb

Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32563

llvm-svn: 302938
2017-05-12 19:29:27 +00:00
Amaury Sechet 09ecd3117e Update various test's codegen. NFC
llvm-svn: 296257
2017-02-25 16:46:47 +00:00
Simon Pilgrim bfd4495512 [X86][SSE] Combine shuffle nodes with multiple uses if all the users are being combined.
Currently we only combine shuffle nodes if they have a single user to prevent us from causing code bloat by splitting the shuffles into several different combines.

We don't take into account that in some cases we will already have combined all the users during recursively calling up the shuffle tree.

This patch keeps a list of all the shuffle nodes that have been combined so far and permits combining of further shuffle nodes if all its users are in that list.

Differential Revision: https://reviews.llvm.org/D29399

llvm-svn: 294183
2017-02-06 13:44:45 +00:00
Asaf Badouh e11d2d73bf [X86][MCU] Minor bug fix for r293469 + test case
llvm-svn: 293478
2017-01-30 13:14:37 +00:00
Asaf Badouh 53713df0c2 [X86][MCU] replace select with bit manipulation instead of branches
Differential Revision: https://reviews.llvm.org/D28354


 

llvm-svn: 293469
2017-01-30 08:16:59 +00:00
Asaf Badouh b573553424 DAGCombiner: fix combine of trunc and select
bugzilla:
https://llvm.org/bugs/show_bug.cgi?id=29002
pr29002

Differential Revision: https://reviews.llvm.org/D26449


 

llvm-svn: 286938
2016-11-15 07:55:22 +00:00
Asaf Badouh bb2338e939 reproducer for pr29002
https://reviews.llvm.org/D26449

llvm-svn: 286470
2016-11-10 16:27:27 +00:00
Simon Pilgrim 319c094771 [X86][SSE] Regenerate select tests
llvm-svn: 283674
2016-10-08 21:17:44 +00:00
Sanjay Patel c0899b961a [x86] regenerate checks
llvm-svn: 281529
2016-09-14 20:16:24 +00:00
Hans Wennborg 23cdc643b9 Revert to extend i8/i16 return values on Darwin (PR26665)
In r260133, LLVM was changed to no longer extend i8/i16 return values,
as it's not required by the ABI. However, code was found in the wild
that relies on the old behaviour on Darwin, so this commit reverts
back to that old behaviour for Darwin.

On other platforms, it's less likely that code would be depending on
the old behaviour, as GCC and MSVC haven't been extending such return
values.

llvm-svn: 261235
2016-02-18 18:17:05 +00:00
Hans Wennborg 850ec6ca18 [X86] Don't zero/sign-extend i1, i8, or i16 return values to 32 bits (PR22532)
This matches GCC and MSVC's behaviour, and saves on code size.

We were already not extending i1 return values on x86_64 after r127766. This
takes that patch further by applying it to x86 target as well, and also for i8
and i16.

The ABI docs have been unclear about the required behaviour here. The new i386
psABI [1] clearly states (Table 2.4, page 14) that i1, i8, and i16 return
vales do not need to be extended beyond 8 bits. The x86_64 ABI doc is being
updated to say the same [2].

Differential Revision: http://reviews.llvm.org/D16907

 [1]. https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf
 [2]. https://groups.google.com/d/msg/x86-64-abi/E8O33onbnGQ/_RFWw_ixDQAJ

llvm-svn: 260133
2016-02-08 19:34:30 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Chandler Carruth 40dbd382ad [SDAG] Fix a really, really terrible bug in the DAG combiner.
This code is completely wrong. It is also dead, as if it were to *ever*
run, it would crash. Fortunately, after my work to the combiner, it is
at least *possible* to reach the code, and llvm-stress has found a test
case. Thanks to Patrick for reporting.

It would be really good if anyone who remembers how this code works and
what it was intended to do could add some more obvious test coverage
instead of my completely contrived and reduced test case. My test case
was so brittle I left a bread crumb comment in it to help the next
person to stumble on it and not know what it was actually testing for.

llvm-svn: 214785
2014-08-04 21:29:59 +00:00
Matt Arsenault 3332b70627 Revert "Revert r212640, "Add trunc (select c, a, b) -> select c (trunc a), (trunc b) combine.""
Don't try to convert the select condition type.

llvm-svn: 212750
2014-07-10 18:21:04 +00:00
Andrew Trick e97d8d6dde Enable MI Sched for x86.
This changes the SelectionDAG scheduling preference to source
order. Soon, the SelectionDAG scheduler can be bypassed saving
a nice chunk of compile time.

Performance differences that result from this change are often a
consequence of register coalescing. The register coalescer is far from
perfect. Bugs can be filed for deficiencies.

On x86 SandyBridge/Haswell, the source order schedule is often
preserved, particularly for small blocks.

Register pressure is generally improved over the SD scheduler's ILP
mode. However, we are still able to handle large blocks that require
latency hiding, unlike the SD scheduler's BURR mode. MI scheduler also
attempts to discover the critical path in single-block loops and
adjust heuristics accordingly.

The MI scheduler relies on the new machine model. This is currently
unimplemented for AVX, so we may not be generating the best code yet.

Unit tests are updated so they don't depend on SD scheduling heuristics.

llvm-svn: 192750
2013-10-15 23:33:07 +00:00
Andrew Trick 8485257d6d Allocate local registers in order for optimal coloring.
Also avoid locals evicting locals just because they want a cheaper register.

Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.

A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.

Other beneficial side effects:

It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.

Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).

Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.

llvm-svn: 187139
2013-07-25 18:35:14 +00:00
Stephen Lin f799e3f944 Convert CodeGen/*/*.ll tests to use the new CHECK-LABEL for easier debugging. No functionality change and all tests pass after conversion.
This was done with the following sed invocation to catch label lines demarking function boundaries:
    sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.

llvm-svn: 186258
2013-07-13 20:38:47 +00:00
Andrew Trick 121124acf8 Revert "Temporarily enable MI-Sched on X86."
This reverts commit 98a9b72e8c56dc13a2617de84503a3d78352789c.

llvm-svn: 184823
2013-06-25 02:48:58 +00:00
Andrew Trick 5a1e0af838 Temporarily enable MI-Sched on X86.
Sorry for the unit test churn. I'll try to make the change permanently
next time.

llvm-svn: 184705
2013-06-24 09:13:20 +00:00
Preston Gurd a01daace88 Pad Short Functions for Intel Atom
The current Intel Atom microarchitecture has a feature whereby
when a function returns early then it is slightly faster to execute
a sequence of NOP instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction until
the return address is ready.

When compiling for X86 Atom only, this patch will run a pass,
called "X86PadShortFunction" which will add NOP instructions where less
than four cycles elapse between function entry and return.

It includes tests.

This patch has been updated to address Nadav's review comments
- Optimize only at >= O1 and don't do optimization if -Os is set
- Stores MachineBasicBlock* instead of BBNum
- Uses DenseMap instead of std::map
- Fixes placement of braces

Patch by Andy Zhang.

llvm-svn: 171879
2013-01-08 18:27:24 +00:00
Nadav Rotem 478b6a47ec Revert revision 171524. Original message:
URL: http://llvm.org/viewvc/llvm-project?rev=171524&view=rev
Log:
The current Intel Atom microarchitecture has a feature whereby when a function
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.

When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.

It includes tests.

Patch by Andy Zhang.

llvm-svn: 171603
2013-01-05 05:42:48 +00:00
Preston Gurd e36b685a94 The current Intel Atom microarchitecture has a feature whereby when a function
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.

When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.

It includes tests.

Patch by Andy Zhang.

llvm-svn: 171524
2013-01-04 20:54:54 +00:00
Benjamin Kramer ecd15d7f6c X86: Fix accidentally swapped operands.
llvm-svn: 165871
2012-10-13 12:50:19 +00:00
Benjamin Kramer d6b9362fc2 X86: Promote i8 cmov when both operands are coming from truncates of the same width.
X86 doesn't have i8 cmovs so isel would emit a branch. Emitting branches at this
level is often not a good idea because it's too late for many optimizations to
kick in. This solution doesn't add any extensions (truncs are free) and tries
to avoid introducing partial register stalls by filtering direct copyfromregs.

I'm seeing a ~10% speedup on reading a random .png file with libpng15 via
graphicsmagick on x86_64/westmere, but YMMV depending on the microarchitecture.

llvm-svn: 165868
2012-10-13 10:39:49 +00:00
Manman Ren e8c6b15137 Update testing case for Atom when disabling rematerialization in
TwoAddressInstructionPass.

The generated code for Atom has a different code sequence. This is realted
to commit r160749.

llvm-svn: 160755
2012-07-25 20:17:14 +00:00
Manman Ren cc1dc6dc11 Disable rematerialization in TwoAddressInstructionPass.
It is redundant; RegisterCoalescer will do the remat if it can't eliminate
the copy. Collected instruction counts before and after this. A few extra
instructions are generated due to spilling but it is normal to see these kinds
of changes with almost any small codegen change, according to Jakob.

This also fixed rdar://11830760 where xor is expected instead of movi0.

llvm-svn: 160749
2012-07-25 18:28:13 +00:00
Manman Ren ef4e0479ec X86: optimization for -(x != 0)
This patch will optimize -(x != 0) on X86
FROM 
cmpl	$0x01,%edi
sbbl	%eax,%eax
notl	%eax
TO
negl %edi
sbbl %eax %eax

In order to generate negl, I added patterns in Target/X86/X86InstrCompiler.td:
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;

rdar: 10961709
llvm-svn: 156312
2012-05-07 18:06:23 +00:00
Manman Ren f02efc8731 Revert r155853
The commit is intended to fix rdar://10961709.
But it is the root cause of PR12720.
Revert it for now.

llvm-svn: 155992
2012-05-02 15:24:32 +00:00
Manman Ren 4f4d5c8fc8 X86: optimization for -(x != 0)
This patch will optimize -(x != 0) on X86
FROM 
cmpl	$0x01,%edi
sbbl	%eax,%eax
notl	%eax
TO
negl %edi
sbbl %eax %eax

llvm-svn: 155853
2012-04-30 22:51:25 +00:00
Manman Ren 5b7e08c9d8 test/CodeGen/X86/select.ll: remove spaces
llvm-svn: 155840
2012-04-30 18:54:27 +00:00
Chandler Carruth 4190b507c5 Flip the new block-placement pass to be on by default.
This is mostly to test the waters. I'd like to get results from FNT
build bots and other bots running on non-x86 platforms.

This feature has been pretty heavily tested over the last few months by
me, and it fixes several of the execution time regressions caused by the
inlining work by preventing inlining decisions from radically impacting
block layout.

I've seen very large improvements in yacr2 and ackermann benchmarks,
along with the expected noise across all of the benchmark suite whenever
code layout changes. I've analyzed all of the regressions and fixed
them, or found them to be impossible to fix. See my email to llvmdev for
more details.

I'd like for this to be in 3.1 as it complements the inliner changes,
but if any failures are showing up or anyone has concerns, it is just
a flag flip and so can be easily turned off.

I'm switching it on tonight to try and get at least one run through
various folks' performance suites in case SPEC or something else has
serious issues with it. I'll watch bots and revert if anything shows up.

llvm-svn: 154816
2012-04-16 13:49:17 +00:00