This is a re-application of a r303497 that was reverted in r303498.
I thought it had broken a bot when it had not (the breakage did not
go away with the revert).
This change makes the split between the "exact" backedge taken count
and the "maximum" backedge taken count a bit more obvious. Both of
these are upper bounds on the number of times the loop header
executes (since SCEV does not account for most kinds of abnormal
control flow), but the latter is guaranteed to be a constant.
There were a few places where the max backedge taken count *was* a
non-constant; I've changed those to compute constants instead.
At this point, I'm not sure if the constant max backedge count can be
computed by calling `getUnsignedRange(Exact).getUnsignedMax()` without
losing precision. If it can, we can simplify even further by making
`getMaxBackedgeTakenCount` a thin wrapper around
`getBackedgeTakenCount` and `getUnsignedRange`.
llvm-svn: 303531
This change makes the split between the "exact" backedge taken count
and the "maximum" backedge taken count a bit more obvious. Both of
these are upper bounds on the number of times the loop header
executes (since SCEV does not account for most kinds of abnormal
control flow), but the latter is guaranteed to be a constant.
There were a few places where the max backedge taken count *was* a
non-constant; I've changed those to compute constants instead.
At this point, I'm not sure if the constant max backedge count can be
computed by calling `getUnsignedRange(Exact).getUnsignedMax()` without
losing precision. If it can, we can simplify even further by making
`getMaxBackedgeTakenCount` a thin wrapper around
`getBackedgeTakenCount` and `getUnsignedRange`.
llvm-svn: 303497
Make SolveLinEquationWithOverflow take the start as a SCEV, so we can
solve more cases. With that implemented, get rid of the special case
for powers of two.
The additional functionality probably isn't particularly useful,
but it might help a little for certain cases involving pointer
arithmetic.
Differential Revision: https://reviews.llvm.org/D28884
llvm-svn: 293576
HowFarToZero was supposed to use unsigned division in order to calculate
the backedge taken count. However, SCEVDivision::divide performs signed
division. Unless I am mistaken, no users of SCEVDivision actually want
signed arithmetic: switch to udiv and urem.
This fixes PR21578.
llvm-svn: 222093
ScalarEvolution in the presence of multiple exits. Previously all
loops exits had to have identical counts for a loop trip count to be
considered computable. This pessimization was implemented by calling
getBackedgeTakenCount(L) rather than getExitCount(L, ExitingBlock)
inside of ScalarEvolution::getSmallConstantTripCount() (see the FIXME
in the comments of that function). The pessimization was added to fix
a corner case involving undefined behavior (pr/16130). This patch more
precisely handles the undefined behavior case allowing the pessimization
to be removed.
ControlsExit replaces IsSubExpr to more precisely track the case where
undefined behavior is expected to occur. Because undefined behavior is
tracked more precisely we can remove MustExit from ExitLimit. MustExit
was used to track the case where the limit was computed potentially
assuming undefined behavior even if undefined behavior didn't necessarily
occur.
llvm-svn: 219517
If we have a loop of the form
for (unsigned n = 0; n != (k & -32); n += 32) {}
then we know that n is always divisible by 32 and the loop must
terminate. Even if we have a condition where the loop counter will
overflow it'll always hold this invariant.
PR19183. Our loop vectorizer creates this pattern and it's also
occasionally formed by loop counters derived from pointers.
llvm-svn: 204728