If we don't know anything about the alignment of a pointer, Align(1) is
still correct: all pointers are at least 1-byte aligned.
Included in this patch is a bugfix for an issue discovered during this
cleanup: pointers with "dereferenceable" attributes/metadata were
assumed to be aligned according to the type of the pointer. This
wasn't intentional, as far as I can tell, so Loads.cpp was fixed to
stop making this assumption. Frontends may need to be updated. I
updated clang's handling of C++ references, and added a release note for
this.
Differential Revision: https://reviews.llvm.org/D80072
This is D77454, except for stores. All the infrastructure work was done
for loads, so the remaining changes necessary are relatively small.
Differential Revision: https://reviews.llvm.org/D79968
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
No changes relative to last time, but after a mitigation for
an AMDGPU regression landed.
---
If SimplifyInstruction() does not succeed in simplifying the
instruction, it will compute the known bits of the instruction
in the hope that all bits are known and the instruction can be
folded to a constant. I have removed a similar optimization
from InstCombine in D75801, and would like to drop this one as well.
On average, we spend ~1% of total compile-time performing this
known bits calculation. However, if we introduce some additional
statistics for known bits computations and how many of them succeed
in simplifying the instruction we get (on test-suite):
instsimplify.NumKnownBits: 216
instsimplify.NumKnownBitsComputed: 13828375
valuetracking.NumKnownBitsComputed: 45860806
Out of ~14M known bits calculations (accounting for approximately
one third of all known bits calculations), only 0.0015% succeed in
producing a constant. Those cases where we do succeed to compute
all known bits will get folded by other passes like InstCombine
later. On test-suite, only lencod.test and GCC-C-execute-pr44858.test
show a hash difference after this change. On lencod we see an
improvement (a loop phi is optimized away), on the GCC torture
test a regression (a function return value is determined only
after IPSCCP, preventing propagation from a noinline function.)
There are various regressions in InstSimplify tests. However, all
of these cases are already handled by InstCombine, and corresponding
tests have already been added there.
Differential Revision: https://reviews.llvm.org/D79294
If SimplifyInstruction() does not succeed in simplifying the
instruction, it will compute the known bits of the instruction
in the hope that all bits are known and the instruction can be
folded to a constant. I have removed a similar optimization
from InstCombine in D75801, and would like to drop this one as well.
On average, we spend ~1% of total compile-time performing this
known bits calculation. However, if we introduce some additional
statistics for known bits computations and how many of them succeed
in simplifying the instruction we get (on test-suite):
instsimplify.NumKnownBits: 216
instsimplify.NumKnownBitsComputed: 13828375
valuetracking.NumKnownBitsComputed: 45860806
Out of ~14M known bits calculations (accounting for approximately
one third of all known bits calculations), only 0.0015% succeed in
producing a constant. Those cases where we do succeed to compute
all known bits will get folded by other passes like InstCombine
later. On test-suite, only lencod.test and GCC-C-execute-pr44858.test
show a hash difference after this change. On lencod we see an
improvement (a loop phi is optimized away), on the GCC torture
test a regression (a function return value is determined only
after IPSCCP, preventing propagation from a noinline function.)
There are various regressions in InstSimplify tests. However, all
of these cases are already handled by InstCombine, and corresponding
tests have already been added there.
Differential Revision: https://reviews.llvm.org/D79294
Summary:
This patch defines two freeze instructions to have the same value number if they are equivalent.
This is allowed because GVN replaces all uses of a duplicated instruction with another.
If it partially rewrites use, it is not allowed. e.g)
```
a = freeze(x)
b = freeze(x)
use(a)
use(a)
use(b)
=>
use(a)
use(b) // This is not allowed!
use(b)
```
Reviewers: fhahn, reames, spatel, efriedma
Reviewed By: fhahn
Subscribers: lebedev.ri, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75398
Adds the global (cl::opt) GVNOption enable-load-in-loop-pre in order
to control whether the optimization will be performed if the load
is part of a loop.
Patch by Hendrik Greving!
Differential Revision: https://reviews.llvm.org/D73804
Introduce parsing, add a few instances of parameter use into GVN-PRE tests.
Reviewers: skatkov, asbirlea
Reviewed By: skatkov
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72752
Factor out common logic into some reasonable commented helper functions. In the process, ensure that the in-block vs cross-block cases are handled the same. They previously weren't.
Differential Revision: https://reviews.llvm.org/D67126
This extends the existing logic for propagating constant expressions in an analogous manner for what we do across basic blocks. The core point is that we chose some order of operands, and canonicalize uses towards that one.
The heuristic used is inspired by the one used across blocks; in a follow up change, I'd plan to common them so that the cross block version uses the slightly stronger ordering herein.
As noted by the TODOs in the code, there's a good amount of room for improving the existing code and making it more powerful. Some follow up work planned.
Differential Revision: https://reviews.llvm.org/D66977
llvm-svn: 370791
This is an updated version of https://reviews.llvm.org/D66909 to fix PR42605.
Basically, current phi translatation translates an old value number to an new
value number for a call instruction based on the literal equality of call
expression, without verifying there is no clobber in between. This is incorrect.
To get a finegrain check, use MachineDependence analysis to do the job. However,
this is still not ideal. Although given a call instruction,
`MemoryDependenceResults::getCallDependencyFrom` returns identical call
instructions without clobber in between using MemDepResult with its DepType to
be `Def`. However, identical is too strict here and we want it to be relaxed a
little to consider phi-translation -- callee is the same, param operands can be
different. That means changing the semantic of `MemDepResult::Def` and I don't
know the potential impact.
So currently the patch is still conservative to only handle
MemDepResult::NonFuncLocal, which means the current call has no function local
clobber. If there is clobber, even if the clobber doesn't stand in between the
current call and the call with the new value, we won't do phi-translate.
Differential Revision: https://reviews.llvm.org/D67013
llvm-svn: 370547
Currently we do not properly translate addresses with PHIs if LoadBB !=
LI->getParent(), because PHITranslateAddr expects a direct predecessor as argument,
because it considers all instructions outside of the current block to
not requiring translation.
The amount of cases that trigger this should be very low, as most single
predecessor blocks should be folded into their predecessor by GVN before
we actually start with value numbering. It is still not guaranteed to
happen, so we should do PHI translation along all edges between the
loads' block and the predecessor where we have to place a load.
There are a few test cases showing current limits of the PHI translation, which
could be improved later.
Reviewers: spatel, reames, efriedma, john.brawn
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65020
llvm-svn: 369570
LoopInfo can be easily preserved by passing it to the functions that
modify the CFG (SplitCriticalEdge and MergeBlockIntoPredecessor.
SplitCriticalEdge also preserves LoopSimplify and LCSSA form when when passing in
LoopInfo. The test case shows that we preserve LoopSimplify and
LoopInfo. Adding addPreservedID(LCSSAID) did not preserve LCSSA for some
reason.
Also I am not sure if it is possible to preserve those in the new pass
manager, as they aren't analysis passes.
Reviewers: reames, hfinkel, davide, jdoerfert
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D65137
llvm-svn: 367332
This is a follow-up to r291037+r291258, which used null debug locations
to prevent jumpy line tables.
Using line 0 locations achieves the same effect, but works better for
crash attribution because it preserves the right inline scope.
Differential Revision: https://reviews.llvm.org/D60913
llvm-svn: 358791
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Noticed these while doing a final sweep of the code to make sure I hadn't missed anything in my last couple of patches. The (minor) missed optimization was noticed because of the stylistic fix to avoid an overly specific cast.
llvm-svn: 354412
Same case as for memset and memcpy, but this time for clobbering stores and loads. We still can't allow coercion to or from non-integrals, regardless of the transform.
Now that I'm done the whole little sequence, it seems apparent that we'd entirely missed reasoning about clobbers in the original GVN support for non-integral pointers.
My appologies, I thought we'd upstreamed all of this, but it turns out we were still carrying a downstream hack which hid all of these issues. My chanks to Cherry Zhang for helping debug.
llvm-svn: 354407
Problem is very similiar to the one fixed for memsets in r354399, we try to coerce a value to non-integral type, and then crash while try to do so. Since we shouldn't be doing such coercions to start with, easy fix. From inspection, I see two other cases which look to be similiar and will follow up with most test cases and fixes if confirmed.
llvm-svn: 354403
GVN generally doesn't forward structs or array types, but it *will* forward vector types to non-vectors and vice versa. As demonstrated in tests, we need to inhibit the same set of transforms for vector of non-integral pointers as for non-integral pointers themselves.
llvm-svn: 354401
If we encountered a location where we tried to forward the value of a memset to a load of a non-integral pointer, we crashed. Such a forward is not legal in general, but we can forward null pointers. Test for both cases are included.
llvm-svn: 354399
Salvaging a redundant load instruction into a debug expression hides a
memory read from optimisation passes. Passes that alter memory behaviour
(such as LICM promoting memory to a register) aren't aware of these debug
memory reads and leave them unaltered, making the debug variable location
point somewhere unsafe.
Teaching passes to know about these debug memory reads would be challenging
and probably incomplete. Finding dbg.value instructions that need to be fixed
would likely be computationally expensive too, as more analysis would be
required. It's better to not generate debug-memory-reads instead, alas.
Changed tests:
* DeadStoreElim: test for salvaging of intermediate operations contributing
to the dead store, instead of salvaging of the redundant load,
* GVN: remove debuginfo behaviour checks completely, this behaviour is still
covered by other tests,
* InstCombine: don't test for salvaged loads, we're removing that behaviour.
Differential Revision: https://reviews.llvm.org/D57962
llvm-svn: 353824
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
Partial Redundancy Elimination of GEPs prevents CodeGenPrepare from
sinking the addressing mode computation of memory instructions back
to its uses. The problem comes from the insertion of PHIs, which
confuse CGP and make it bail.
I've autogenerated the check lines of an existing test and added a
store instruction to demonstrate the motivation behind this change.
The store is now using the gep instead of a phi.
Differential Revision: https://reviews.llvm.org/D55009
llvm-svn: 348496
As K has to dominate I, IIUC I's range metadata must be a subset of
K's. After Eli's recent clarification to the LangRef, loading a value
outside of the range is undefined behavior.
Therefore if I's range contains elements outside of K's range and we would load
one such value, K would cause undefined behavior.
In cases like hoisting/sinking, we still want the most generic range
over all code paths to/from the hoist/sink point. As suggested in the
patches related to D47339, I will refactor the handling of those
scenarios and try to decouple it from this function as follow up, once
we switched to a similar handling of metadata in most of
combineMetadata.
I updated some tests checking mostly the merging of metadata to keep the
metadata of to dominating load. The most interesting one is probably test8 in
test/Transforms/JumpThreading/thread-loads.ll. It contained a comment
about the alias metadata preventing us to eliminate the branch, but it
seem like the actual problem currently is that we merge the ranges of
both loads and cannot eliminate the icmp afterwards. With this patch, we
manage to eliminate the icmp, as the range of the first load excludes 8.
Reviewers: efriedma, nlopes, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D51629
llvm-svn: 345456
If you have the string /usr/bin, prior to this patch it would not
be quoted by our YAML serializer. But a string like C:\src would
be, due to the presence of a backslash. This makes the quoting
rules of basically every single file path different depending on
the path syntax (posix vs. Windows).
While technically not required by the YAML specification to quote
forward slashes, when the behavior of paths is inconsistent it
makes it difficult to portably write FileCheck lines that will
work with either kind of path.
Differential Revision: https://reviews.llvm.org/D53169
llvm-svn: 344359
This reverts commit b86c16ad8c97dadc1f529da72a5bb74e9eaed344.
This is being reverted because I forgot to write a useful
commit message, so I'm going to resubmit it with an actual
commit message.
llvm-svn: 344358
When GVN propagates an equality by replacing one value with another it also
needs to invalidate the cached information for the value being replaced.
Differential Revision: https://reviews.llvm.org/D51218
llvm-svn: 341820
When GVN sets the incoming value for a phi to undef because the incoming block
is unreachable it needs to also invalidate the cached info for that phi in
MemoryDependenceAnalysis, otherwise later queries will return stale information.
Differential Revision: https://reviews.llvm.org/D51099
llvm-svn: 340529
Currently we assign the same value number to two calls reading the same
memory location if we do not have MemoryDependence info. Without MemDep
Info we cannot guarantee that there is no store between the two calls, so we
have to assign a new number to the second call.
It also adds a new option EnableMemDep to enable/disable running
MemoryDependenceAnalysis and also renamed NoLoads to NoMemDepAnalysis to
be more explicit what it does. As it also impacts calls that read memory,
NoLoads is a bit confusing.
Reviewers: efriedma, sebpop, john.brawn, wmi
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D50893
llvm-svn: 340319
This is being done in order to make GVN able to better optimize certain inputs.
MemDep doesn't use PhiValues directly, but does need to notifiy it when things
get invalidated.
Differential Revision: https://reviews.llvm.org/D48489
llvm-svn: 338384
In ConstructSSAForLoadSet if an available value is actually the load that we're
doing SSA construction to eliminate, then we can omit it as SSAUpdate will add
in the value for the phi that will be replacing it anyway. This can result in
simpler IR which can allow further optimisation.
Differential Revision: https://reviews.llvm.org/D44160
llvm-svn: 337686
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
Summary:
This patch introduce new intrinsic -
strip.invariant.group that was described in the
RFC: Devirtualization v2
Reviewers: rsmith, hfinkel, nlopes, sanjoy, amharc, kuhar
Subscribers: arsenm, nhaehnle, JDevlieghere, hiraditya, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47103
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 336073
Summary:
A reprise of D25849.
This crash was found through fuzzing some time ago and was documented in PR28879.
No check for load size has been added due to the following tests:
- Transforms/GVN/invariant.group.ll
- Transforms/GVN/pr10820.ll
These tests expect load sizes that are not a multiple of eight.
Thanks to @davide for the original patch.
Reviewers: nlopes, davide, RKSimon, reames, efriedma
Reviewed By: efriedma
Subscribers: davide, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D48330
llvm-svn: 335294