Commit Graph

152 Commits

Author SHA1 Message Date
River Riddle bc5c7378b2 Add a utility method to MLIRContext get a registered dialect with the derived type instead of the string name. The derived dialect type must provide a static 'getDialectNamespace' method.
This means that we can now do something like:
      ctx->getRegisteredDialect<LLVMDialect>();

    as opposed to:
      static_cast<LLVMDialect *>(ctx->getRegisteredDialect("llvm");

--

PiperOrigin-RevId: 247989896
2019-05-20 13:40:13 -07:00
River Riddle d5b60ee840 Replace Operation::isa with llvm::isa.
--

PiperOrigin-RevId: 247789235
2019-05-20 13:37:52 -07:00
River Riddle c5ecf9910a Add support for using llvm::dyn_cast/cast/isa for operation casts and replace usages of Operation::dyn_cast with llvm::dyn_cast.
--

PiperOrigin-RevId: 247780086
2019-05-20 13:37:31 -07:00
MLIR Team 41d90a85bd Automated rollback of changelist 247778391.
PiperOrigin-RevId: 247778691
2019-05-20 13:37:20 -07:00
River Riddle 02e03b9bf4 Add support for using llvm::dyn_cast/cast/isa for operation casts and replace usages of Operation::dyn_cast with llvm::dyn_cast.
--

PiperOrigin-RevId: 247778391
2019-05-20 13:37:10 -07:00
River Riddle ff6e7cf558 Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic.
The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements:
    * A severity level.
    * A source Location.
    * A list of DiagnosticArguments that help compose and comprise the output message.
      * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc.
      * Arguments can be added to the diagnostic via the stream(<<) operator.
    * (In a future cl) A list of attached notes.
      * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own.

    The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction.

    These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics.

    Simple Example:

    emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits");
    emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits";

--

PiperOrigin-RevId: 246526439
2019-05-06 08:26:34 -07:00
Stephan Herhut 5d7231d812 Add transformation of the NVVM dialect to an LLVM module. Only handles
the generation of intrinsics out of NVVM index ops for now.

--

PiperOrigin-RevId: 245933152
2019-05-06 08:22:14 -07:00
Mehdi Amini 7286d43920 Introduce std.varargs attribute to mark variadic arguments functions
This is only teaching the LLVM converter to propagate the attribute onto
    the function type. MLIR will not recognize this arguments, so it would only
    be useful when calling for example `printf` with the same arguments across
    a module. Since varargs is part of the ABI lowering, this is not NFC.

--

PiperOrigin-RevId: 242382427
2019-04-07 18:22:56 -07:00
Alex Zinenko 33285de937 ExecutionEngine: allow for running MLIR passes during JIT-compilation
The existing implementation of the ExecutionEngine unconditionally runs a list
    of "default" MLIR passes on the module upon creation.  These passes include,
    among others, dialect conversions from affine to standard and from standard to
    LLVM IR dialects.  In some cases, these conversions might have been performed
    before ExecutionEngine is created.  More advanced use cases may be performing
    additional transformations that the "default" passes will conflict with.
    Provide an overload for ExecutionEngine::create that takes a PassManager
    configured with the passes to run on the module.  If it is not provided, do not
    run any passes.  The engine will not be created if the input module, after the
    pass manager, has any other dialect than the LLVM IR dialect.

--

PiperOrigin-RevId: 242127393
2019-04-07 18:19:23 -07:00
Jacques Pienaar 1273af232c Add build files and update README.
* Add initial version of build files;
    * Update README with instructions to download and build MLIR from github;

--

PiperOrigin-RevId: 241102092
2019-03-30 11:23:22 -07:00
River Riddle af9760fe18 Replace remaining usages of the Instruction class with Operation.
PiperOrigin-RevId: 240777521
2019-03-29 17:50:04 -07:00
River Riddle 5f3b914a6e Replace remaining usages of "Op::operator->" with "." and remove it.
PiperOrigin-RevId: 240210336
2019-03-29 17:40:25 -07:00
Chris Lattner 986310a68f Remove const from Value, Instruction, Argument, and the various methods on the
*Op classes.  This is a net reduction by almost 400LOC.

PiperOrigin-RevId: 239972443
2019-03-29 17:34:33 -07:00
Chris Lattner 3d6c74fff5 Remove const from mlir::Block.
This also eliminates some incorrect reinterpret_cast logic working around it, and numerous const-incorrect issues (like block argument iteration).

PiperOrigin-RevId: 239712029
2019-03-29 17:30:30 -07:00
Chris Lattner 88e9f418f5 Continue pushing const out of the core IR types - in this case, remove const
from Function.

PiperOrigin-RevId: 239638635
2019-03-29 17:29:58 -07:00
Chris Lattner 8d526ef173 Continue pushing const out of the IR types - removing the notion of a 'const
Module'.  NFC.

PiperOrigin-RevId: 239532885
2019-03-29 17:27:26 -07:00
Alex Zinenko dbaab04a80 TableGen most of the LLVM IR Dialect to LLVM IR conversions
The LLVM IR Dialect strives to be close to the original LLVM IR instructions.
The conversion from the LLVM IR Dialect to LLVM IR proper is mostly mechanical
and can be automated.  Implement TableGen support for generating conversions
from a concise pattern form in the TableGen definition of the LLVM IR Dialect
operations.  It is used for all operations except calls and branches.  These
operations need access to function and block remapping tables and would require
significantly more code to generate the conversions from TableGen definitions
than the current manually written conversions.

This implementation is accompanied by various necessary changes to the TableGen
operation definition infrastructure.  In particular, operation definitions now
contain named accessors to results as well as named accessors to the variadic
operand (returning a vector of operands).  The base operation support TableGen
file now contains a FunctionAttr definition.  The TableGen now allows to query
the names of the operation results.

PiperOrigin-RevId: 237203077
2019-03-29 17:04:50 -07:00
Dimitrios Vytiniotis 480cc2b063 Using llvm.noalias attribute when generating LLVMIR.
PiperOrigin-RevId: 237063104
2019-03-29 17:01:11 -07:00
Lei Zhang 85d9b6c8f7 Use consistent names for dialect op source files
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:

  <full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}

Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.

Purely mechanical. NFC.

PiperOrigin-RevId: 236371358
2019-03-29 16:53:19 -07:00
Alex Zinenko 8cc50208a6 LLVM IR Dialect: unify call and call0 operations
When the LLVM IR dialect was implemented, TableGen operation definition scheme
did not support operations with variadic results.  Therefore, the `call`
instruction was split into `call` and `call0` for the single- and zero-result
calls (LLVM does not support multi-result operations).  Unify `call` and
`call0` using the recently added TableGen support for operations with Variadic
results.  Explicitly verify that the new operation has 0 or 1 results.  As a
side effect, this change enables clean-ups in the conversion to the LLVM IR
dialect that no longer needs to rely on wrapped LLVM IR void types when
constructing zero-result calls.

PiperOrigin-RevId: 236119197
2019-03-29 16:49:59 -07:00
River Riddle 79944e5eef Add a Function::isExternal utility to simplify checks for external functions.
PiperOrigin-RevId: 235746553
2019-03-29 16:43:50 -07:00
Alex Zinenko 1da1b4c321 LLVM IR dialect and translation: support conditional branches with arguments
Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the
dialect and the conversion procedure must account for the differences betweeen
block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI
nodes with different values coming from the same source. Therefore, the LLVM IR
dialect now disallows `cond_br` operations that have identical successors
accepting arguments, which would lead to invalid PHI nodes. The conversion
process resolves the potential PHI source ambiguity by injecting dummy blocks
if the same block is used more than once as a successor in an instruction.
These dummy blocks branch unconditionally to the original successors, pass them
the original operands (available in the dummy block because it is dominated by
the original block) and are used instead of them in the original terminator
operation.

PiperOrigin-RevId: 235682798
2019-03-29 16:43:05 -07:00
Alex Zinenko ffc9043604 LLVM dialect conversion and target: support indirect calls
Add support for converting MLIR `call_indirect` instructions to the LLVM IR
dialect.  In LLVM IR, the same instruction is used for direct and indirect
calls.  In the dialect, we have `llvm.call` and `llvm.call0` to work around the
absence of the void type in MLIR.  For direct calls, the callee is stored as
instruction attribute.  Use the same pair of instructions for indirect calls by
omitting the callee attribute.  In the MLIR to LLVM IR translator, check the
presence of attribute to decide whether to construct a direct or an indirect
call using different LLVM IR Builder functions.

Add support for converting constants of function type to the LLVM IR dialect
and for translating them to the LLVM IR proper.  The `llvm.constant` operation
works similarly to other types: its attribute has MLIR function type but the
value it produces has LLVM IR function type wrapped in the dialect type.  While
lowering, look up the pointer to the converted function in the corresponding
mapping.

PiperOrigin-RevId: 234132351
2019-03-29 16:28:56 -07:00
Alex Zinenko 50700b8122 Reimplement LLVM IR translation to use the MLIR LLVM IR dialect
Original implementation of the translation from MLIR to LLVM IR operated on the
Standard+BuiltIn dialect, with a later addition of the SuperVector dialect.
This required the translation to be aware of a potetially large number of other
dialects as the infrastructure extended.  With the recent introduction of the
LLVM IR dialect into MLIR, the translation can be switched to only translate
the LLVM IR dialect, and the translation of the operations becomes largely
mechanical.

The reimplementation of the translator follows the lines of the original
translator in function and basic block conversion.  In particular, block
arguments are converted to LLVM IR PHI nodes, which are connected to their
sources after all blocks of a function had been converted.  Thanks to LLVM IR
types being wrapped in the MLIR LLVM dialect type, type conversion is
simplified to only convert function types, all other types are simply
unwrapped.  Individual instructions are constructed using the LLVM IRBuilder,
which has a great potential for being table-generated from the LLVM IR dialect
operation definitions.

The input of the test/Target/llvmir.mlir is updated to use the MLIR LLVM IR
dialect.  While it is now redundant with the dialect conversion test, the point
of the exercise is to guarantee exactly the same LLVM IR is emitted.  (Only the
name of the allocation function is changed from `__mlir_alloc` to `alloc` in
the CHECK lines.)  It will be simplified in a follow-up commit.

PiperOrigin-RevId: 233842306
2019-03-29 16:27:10 -07:00
River Riddle 44e040dd63 Remove remaining references to OperationInst in all directories except for lib/Transforms.
PiperOrigin-RevId: 232322771
2019-03-29 16:10:38 -07:00
River Riddle de2d0dfbca Fold the functionality of OperationInst into Instruction. OperationInst still exists as a forward declaration and will be removed incrementally in a set of followup cleanup patches.
PiperOrigin-RevId: 232198540
2019-03-29 16:09:19 -07:00
River Riddle c46b0feadb Fix use of llvm::Module::getOrInsertFunction after the upstream opaque pointer type changes.
PiperOrigin-RevId: 232002583
2019-03-29 16:05:39 -07:00
Jacques Pienaar b52dd7f788 Use formatv for the error instead of string stream.
PiperOrigin-RevId: 231507680
2019-03-29 16:01:08 -07:00
River Riddle 6859f33292 Migrate VectorOrTensorType/MemRefType shape api to use int64_t instead of int.
PiperOrigin-RevId: 230605756
2019-03-29 15:33:20 -07:00
Uday Bondhugula 6e4f3e40c7 Fix outdated comments
PiperOrigin-RevId: 229300301
2019-03-29 15:16:08 -07:00
Lei Zhang ac5a50e1e4 Extract openInputFile() into Support/FileUtilities
Multiple binaries have the needs to open input files. Use this function
to de-duplicate the code.

Also changed openOutputFile() to return errors using std::string since
it is a library call and accessing I/O in library call is not friendly.

PiperOrigin-RevId: 228878221
2019-03-29 15:09:11 -07:00
Alex Zinenko caa7e70627 LLVM IR lowering: support integer division and remainder operations
These operations trivially map to LLVM IR counterparts for operands of scalar
and (one-dimensional) vector type.  Multi-dimensional vector and tensor type
operands would fail type conversion before the operation conversion takes
place.  Add tests for scalar and vector cases.  Also add a test for vector
`select` instruction for consistency with other tests.

PiperOrigin-RevId: 228077564
2019-03-29 14:59:07 -07:00
River Riddle 54948a4380 Split the standard types from builtin types and move them into separate source files(StandardTypes.cpp/h). After this cl only FunctionType and IndexType are builtin types, but IndexType will likely become a standard type when the ml/cfgfunc merger is done. Mechanical NFC.
PiperOrigin-RevId: 227750918
2019-03-29 14:54:07 -07:00
Alex Zinenko 0565067495 LLVM IR Lowering: support "select"
This commit adds support for the "select" operation that lowers directly into
its LLVM IR counterpart.  A simple test is included.

PiperOrigin-RevId: 227527893
2019-03-29 14:51:08 -07:00
Chris Lattner 3c8fc797de Simplify the remapFunctionAttrs logic, merging CFG/ML function handling.
Remove an unnecessary restriction in forward substitution.  Slightly
simplify LLVM IR lowering, which previously would crash if given an ML
function, it should now produce a clean error if given a function with an
if/for instruction in it, just like it does any other unsupported op.

This is step 27/n towards merging instructions and statements.

PiperOrigin-RevId: 227324542
2019-03-29 14:49:35 -07:00
Chris Lattner 5b9c3f7cdb Tidy up references to "basic blocks" that should refer to blocks now. NFC.
PiperOrigin-RevId: 227196077
2019-03-29 14:44:59 -07:00
Chris Lattner 456ad6a8e0 Standardize naming of statements -> instructions, revisting the code base to be
consistent and moving the using declarations over.  Hopefully this is the last
truly massive patch in this refactoring.

This is step 21/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227178245
2019-03-29 14:44:30 -07:00
Chris Lattner 315a466aed Rename BasicBlock and StmtBlock to Block, and make a pass cleaning it up. I did not make an effort to rename all of the 'bb' names in the codebase, since they are still correct and any specific missed once can be fixed up on demand.
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.

This is step 19/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227163082
2019-03-29 14:43:58 -07:00
Chris Lattner 69d9e990fa Eliminate the using decls for MLFunction and CFGFunction standardizing on
Function.

This is step 18/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227139399
2019-03-29 14:43:13 -07:00
Chris Lattner d798f9bad5 Rename BBArgument -> BlockArgument, Op::getOperation -> Op::getInst(),
StmtResult -> InstResult, StmtOperand -> InstOperand, and remove the old names.

This is step 17/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227121537
2019-03-29 14:42:40 -07:00
Chris Lattner 5187cfcf03 Merge Operation into OperationInst and standardize nomenclature around
OperationInst.  This is a big mechanical patch.

This is step 16/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227093712
2019-03-29 14:42:23 -07:00
Chris Lattner 3f190312f8 Merge SSAValue, CFGValue, and MLValue together into a single Value class, which
is the new base of the SSA value hierarchy.  This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate.  This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.

This is step 11/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227064624
2019-03-29 14:40:06 -07:00
Chris Lattner 776b035646 Eliminate the Instruction, BasicBlock, CFGFunction, MLFunction, and ExtFunction classes, using the Statement/StmtBlock hierarchy and Function instead.
This *only* changes the internal data structures, it does not affect the user visible syntax or structure of MLIR code.  Function gets new "isCFG()" sorts of predicates as a transitional measure.

This patch is gross in a number of ways, largely in an effort to reduce the amount of mechanical churn in one go.  It introduces a bunch of using decls to keep the old names alive for now, and a bunch of stuff needs to be renamed.

This is step 10/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227044402
2019-03-29 14:39:49 -07:00
Alex Zinenko 9403f80dd3 LLVM IR lowering: support SubIOp and SubFOp
The binary subtraction operations were not supported by the lowering because
they were not essential for the testing flow.  Add support for these
operations.

PiperOrigin-RevId: 226941463
2019-03-29 14:37:05 -07:00
Alex Zinenko 699a2f5373 LLVM IR lowering: support vector_type_cast
Introduce support for lowering vector_type_cast to LLVM IR.  It consists in
creating a new MemRef descriptor with the base pointer with the type that
corresponds to the lowered element type of the target memref.  Since
`vector_type_cast` does not support dynamic shapes in the target type, no
dynamic size conversion is necessary.

This commit goes in the opposite direction of what is expected of LLVM IR
lowering: it should not be aware of all the other dialects.  Instead, we should
have separate definitions for conversions in a global lowering framework.
However, this requires LLVM dialect to be implemented, which is currently
blocked by the absence of user-defined types.  Implement the lowering anyway to
unblock end-to-end vectorization experiments.
PiperOrigin-RevId: 225887368
2019-03-29 14:31:28 -07:00
Alex Zinenko df9bd857b1 Type system: replace Type::getBitWidth with getIntOrFloatBitWidth
As MLIR moves towards dialect-specific types, a generic Type::getBitWidth does
not make sense for all of them.  Even with the current type system, the bit
width is not defined (and causes the method in question to abort) for all
TensorFlow types.

This commit restricts the bit width definition to primitive standard types that
have a number of bits appearing verbatim in their type, i.e., integers and
floats.  As a side effect, it delegates the decision on the bit width of the
`index` to the backends.  Existing backends currently hardcode it to 64 bits.

The Type::getBitWidth method is replaced by Type::getIntOrFloatBitWidth that
only applies to integers and floats.  The call sites are updated to use the new
method, where applicable, or rewritten so as not rely on it.  Incidentally,
this fixes a utility method that did not account for memrefs being allowed to
have vectors as element types in the size computation.

As an observation, several places in the code use Type in places where a more
specific type could be used instead.  Some of those are fixed by this commit.

PiperOrigin-RevId: 225844792
2019-03-29 14:30:43 -07:00
Alex Zinenko 359835eb27 LLVM IR lowering: support 1D vector operations
Introduce initial support for 1D vector operations.  LLVM does not support
higher-dimensional vectors so the caller must make sure they don't appear in
the input MLIR.  Handle the presence of higher-dimensional vectors by failing
gracefully.

Introduce the type conversion for 1D vector types and hook it up with the rest
of the type convresion system.  Support "splat" constants for vector types.  As
a side effect, this refactors constant operation emission by separating out
scalar integer constants into a separate case and by extracting out the helper
function for scalar float construction.  Existing binary operations apply to
vectors transparently.

PiperOrigin-RevId: 225172349
2019-03-29 14:26:37 -07:00
Smit Hinsu adca59e4f7 Return bool from all emitError methods similar to Operation::emitOpError
This simplifies call-sites returning true after emitting an error. After the
conversion, dropped braces around single statement blocks as that seems more
common.

Also, switched to emitError method instead of emitting Error kind using the
emitDiagnostic method.

TESTED with existing unit tests

PiperOrigin-RevId: 224527868
2019-03-29 14:22:06 -07:00
Alex Zinenko dee51d0961 LLVM IR Lowering: support multi-value returns.
Unlike MLIR, LLVM IR does not support functions that return multiple values.
Simulate this by packing values into the LLVM structure type in the same order
as they appear in the MLIR return.  If the function returns only a single
value, return it directly without packing.

PiperOrigin-RevId: 223964886
2019-03-29 14:15:56 -07:00
Alex Zinenko e7f43c8361 LLVM IR lowering: support 'dim' operation.
Add support for translating 'dim' opreation on MemRefs to LLVM IR.  For a
static size, this operation merely defines an LLVM IR constant value that may
not appear in the output IR if not used (and had not been removed before by
DCE).  For a dynamic size, this operation is translated into an access to the
MemRef descriptor that contains the dynamic size.

PiperOrigin-RevId: 223160774
2019-03-29 14:11:10 -07:00
Alex Zinenko 90d1b6b5f2 LLVM IR lowering: support simple MemRef types
Introduce initial support for MemRef types, including type conversion,
allocation and deallocation, read and write element-wise access, passing
MemRefs to and returning from functions.  Affine map compositions and
non-default memory spaces are NOT YET supported.

Lowered code needs to handle potentially dynamic sizes of the MemRef.  To do
so, it replaces a MemRef-typed value with a special MemRef descriptor that
carries the data and the dynamic sizes together.  A MemRef type is converted to
LLVM's first-class structure type with the first element being the pointer to
the data buffer with data layed out linearly, followed by as many integer-typed
elements as MemRef has dynamic sizes.  The type of these elements is that of
MLIR index lowered to LLVM.  For example, `memref<?x42x?xf32>` is converted to
`{ f32*, i64, i64 }` provided `index` is lowered to `i64`.  While it is
possible to convert MemRefs with fully static sizes to simple pointers to their
elemental types, we opted for consistency and convert them to the
single-element structure.  This makes the conversion code simpler and the
calling convention of the generated LLVM IR functions consistent.

Loads from and stores to a MemRef element are lowered to a sequence of LLVM
instructions that, first, computes the linearized index of the element in the
data buffer using the access indices and combining the static sizes with the
dynamic sizes stored in the descriptor, and then loads from or stores to the
buffer element indexed by the linearized subscript.  While some of the index
computations may be redundant (i.e., consecutive load and store to the same
location in the same scope could reuse the linearized index), we emit them for
every operation.  A subsequent optimization pass may eliminate them if
necessary.

MemRef allocation and deallocation is performed using external functions
`__mlir_alloc(index) -> i8*` and `__mlir_free(i8*)` that must be implemented by
the caller.  These functions behave similarly to `malloc` and `free`, but can
be extended to support different memory spaces in future.  Allocation and
deallocation instructions take care of casting the pointers.  Prior to calling
the allocation function, the emitted code creates an SSA Value for the
descriptor and uses it to store the dynamic sizes of the MemRef passed to the
allocation operation.  It further emits instructions that compute the dynamic
amount of memory to allocate in bytes.  Finally, the allocation stores the
result of calling the `__mlir_alloc` in the MemRef descriptor.  Deallocation
extracts the pointer to the allocated memory from the descriptor and calls
`__mlir_free` on it.  The descriptor itself is not modified and, being
stack-allocated, ceases to exist when it goes out of scope.

MLIR functions that access MemRef values as arguments or return them are
converted to LLVM IR functions that accept MemRef descriptors as LLVM IR
structure types by value.  This significantly simplifies the calling convention
at the LLVM IR level and avoids handling descriptors in the dynamic memory,
however is not always comaptible with LLVM IR functions emitted from C code
with similar signatures.  A separate LLVM pass may be introduced in the future
to provide C-compatible calling conventions for LLVM IR functions generated
from MLIR.

PiperOrigin-RevId: 223134883
2019-03-29 14:10:55 -07:00
Alex Zinenko ac6bfa6780 Lower scalar parts of CFG functions to LLVM IR
Initial restricted implementaiton of the MLIR to LLVM IR translation.
Introduce a new flow into the mlir-translate tool taking an MLIR module
containing CFG functions only and producing and LLVM IR module.  The MLIR
features supported by the translator are as follows:
- primitive and function types;
- integer constants;
- cfg and ext functions with 0 or 1 return values;
- calls to these functions;
- basic block conversion translation of arguments to phi nodes;
- conversion between arguments of the first basic block and function arguments;
- (conditional) branches;
- integer addition and comparison operations.

Are NOT supported:
- vector and tensor types and operations on them;
- memrefs and operations on them;
- allocations;
- functions returning multiple values;
- LLVM Module triple and data layout (index type is hardcoded to i64).

Create a new MLIR library and place it under lib/Target/LLVMIR.  The "Target"
library group is similar to the one present in LLVM and is intended to contain
all future public MLIR translation targets.

The general flow of MLIR to LLVM IR convresion will include several lowering
and simplification passes on the MLIR itself in order to make the translation
as simple as possible.  In particular, ML functions should be transformed to
CFG functions by the recently introduced pass, operations on structured types
will be converted to sequences of operations on primitive types, complex
operations such as affine_apply will be converted into sequence of primitive
operations, primitive operations themselves may eventually be converted to an
LLVM dialect that uses LLVM-like operations.

Introduce the first translation test so that further changes make sure the
basic translation functionality is not broken.

PiperOrigin-RevId: 222400112
2019-03-29 14:07:01 -07:00