The Vector Dialect [document](https://mlir.llvm.org/docs/Dialects/Vector/) discusses the vector abstractions that MLIR supports and the various tradeoffs involved.
One of the layer that is missing in OSS atm is the Hardware Vector Ops (HWV) level.
This revision proposes an AVX512-specific to add a new Dialect/Targets/AVX512 Dialect that would directly target AVX512-specific intrinsics.
Atm, we rely too much on LLVM’s peephole optimizer to do a good job from small insertelement/extractelement/shufflevector. In the future, when possible, generic abstractions such as VP intrinsics should be preferred.
The revision will allow trading off HW-specific vs generic abstractions in MLIR.
Differential Revision: https://reviews.llvm.org/D75987
MLIR supports terminators that have the same successor block with different
block operands, which cannot be expressed in the LLVM's phi-notation as the
block identifier is used to tell apart the predecessors. This limitation can be
worked around by branching to a new block instead, with this new block
unconditionally branching to the original successor and forwarding the
argument. Until now, this transformation was performed during the conversion
from the Standard to the LLVM dialect. This does not scale well to multiple
dialects targeting the LLVM dialect as all of them would have to be aware of
this limitation and perform the preparatory transformation. Instead, do it as a
separate pass and run it immediately before the translation.
Differential Revision: https://reviews.llvm.org/D75619
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
CMake allows calling target_link_libraries() without a keyword,
but this usage is not preferred when also called with a keyword,
and has surprising behavior. This patch explicitly specifies a
keyword when using target_link_libraries().
Differential Revision: https://reviews.llvm.org/D75725
Summary:
This revision removes all of the functionality related to successor operands on the core Operation class. This greatly simplifies a lot of handling of operands, as well as successors. For example, DialectConversion no longer needs a special "matchAndRewrite" for branching terminator operations.(Note, the existing method was also broken for operations with variadic successors!!)
This also enables terminator operations to define their own relationships with successor arguments, instead of the hardcoded "pass-through" behavior that exists today.
Differential Revision: https://reviews.llvm.org/D75318
The existing API for successor operands on operations is in the process of being removed. This revision simplifies a later one that completely removes the existing API.
Differential Revision: https://reviews.llvm.org/D75316
This allows for simplifying OpDefGen, as well providing specializing accessors for the different successor counts. This mirrors the existing traits for operands and results.
Differential Revision: https://reviews.llvm.org/D75313
Summary:
This patch adds support for translation of the OpenMP barrier construct to LLVM
IR. The OpenMP IRBuilder is used for this translation. In this patch the code
for translation is added to the existing LLVM dialect translation to LLVM IR.
The patch includes code changes and a testcase.
Reviewers: jdoerfert, nicolasvasilache, ftynse, rriddle, mehdi_amini
Reviewed By: ftynse, rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D72962
Some attribute kinds are not supported as "value" attributes of
`llvm.mlir.constant` when translating to LLVM IR. We were correctly reporting
an error, but continuing the translation using an "undef" value instead,
leading to a surprising mix of error messages and output IR. Abort the
translation after the error is reported.
Differential Revision: https://reviews.llvm.org/D75450
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Summary:
This revision adds basic support for emitting line table information when exporting to LLVMIR. We don't yet have a story for supporting all of the LLVM debug metadata, so this revision stubs some features(like subprograms) to enable emitting line tables.
Differential Revision: https://reviews.llvm.org/D73934
Summary:
MLIR materializes various enumeration-based LLVM IR operands as enumeration
attributes using ODS. This requires bidirectional conversion between different
but very similar enums, currently hardcoded. Extend the ODS modeling of
LLVM-specific enumeration attributes to include the name of the corresponding
enum in the LLVM C++ API as well as the names of specific enumerants. Use this
new information to automatically generate the conversion functions between enum
attributes and LLVM API enums in the two-way conversion between the LLVM
dialect and LLVM IR proper.
Differential Revision: https://reviews.llvm.org/D73468
Summary:
LLVM importer to MLIR was implemented mostly as a prototype. As such, it did
not deal handle errors in a consistent way, reporting them out stderr in some
cases and continuing the execution in the error state until eventually
crashing. This is not desirable for a user-facing tool. Make sure errors are
returned from functions, consistently checked at call sites and propagated
further. Functions returning nullable IR values return nullptr to denote the
error state. Other functions return LogicalResult. LLVM importer in
mlir-translate should no longer crash on unsupported inputs.
The errors are reported without association with the source file (and therefore
cannot be checked using -verify-diagnostics). Attaching them to the actual
input file is left for future work.
Differential Revision: https://reviews.llvm.org/D72839
Summary:
Implement the handling of llvm::ConstantDataSequential and
llvm::ConstantAggregate for (nested) array and vector types when imporitng LLVM
IR to MLIR. In all cases, the result is a DenseElementsAttr that can be used in
either a `llvm.mlir.global` or a `llvm.mlir.constant`. Nested aggregates are
unpacked recursively until an element or a constant data is found. Nested
arrays with innermost scalar type are represented as DenseElementsAttr of
tensor type. Nested arrays with innermost vector type are represented as
DenseElementsAttr with (multidimensional) vector type.
Constant aggregates of struct type are not yet supported as the LLVM dialect
does not have a well-defined way of modeling struct-type constants.
Differential Revision: https://reviews.llvm.org/D72834
Summary:
This op is the counterpart to LLVM's atomicrmw instruction. Note that
volatile and syncscope attributes are not yet supported.
This will be useful for upcoming parallel versions of `affine.for` and generally
for reduction-like semantics.
Differential Revision: https://reviews.llvm.org/D72741
Summary:
MLIR unlike LLVM IR supports multidimensional vector types. Such types are
lowered to nested LLVM IR arrays wrapping an LLVM IR vector for the innermost
dimension of the MLIR vector. MLIR supports constants of such types using
ElementsAttr for values. Introduce support for converting ElementsAttr into
LLVM IR Constant Aggregates recursively. This enables translation of
multidimensional vector constants from MLIR to LLVM IR.
Differential Revision: https://reviews.llvm.org/D72846
The current implementation of the LLVM-to-MLIR translation could not handle
functions used as constant values in instructions. The handling is added
trivially as `llvm.mlir.constant` can define constants of function type using
SymbolRef attributes, which works even for functions that have not been
declared yet.
Summary:
When converting splat constants for nested sequential LLVM IR types wrapped in
MLIR, the constant conversion was erroneously assuming it was always possible
to recursively construct a constant of a sequential type given only one value.
Instead, wait until all sequential types are unpacked recursively before
constructing a scalar constant and wrapping it into the surrounding sequential
type.
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72688
for (const auto &x : llvm::zip(..., ...))
->
for (auto x : llvm::zip(..., ...))
The return type of zip() is a wrapper that wraps a tuple of references.
> warning: loop variable 'p' is always a copy because the range of type 'detail::zippy<detail::zip_shortest, ArrayRef<long> &, ArrayRef<long> &>' does not return a reference [-Wrange-loop-analysis]
Summary:
`mlir-translate -import-llvm test.ll` was going into segmentation fault if `test.ll` had `float` or `double` constants.
For example,
```
%3 = fadd double 3.030000e+01, %0
```
Now, it is handled in `Importer::getConstantAsAttr` (similar behaviour as normal integers)
Added tests for FP arithmetic
Reviewers: ftynse, mehdi_amini
Reviewed By: ftynse, mehdi_amini
Subscribers: shauheen, mehdi_amini, rriddle, jpienaar, burmako, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71912
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
This function template has been introduced in the early days of MLIR to work
around the absence of common type for ranges of values (operands, block
argumeents, vectors, etc). Core IR now provides ValueRange for exactly this
purpose. Use it instead of the template parameter.
PiperOrigin-RevId: 286431338
* Fixes use of anonymous namespace for static methods.
* Uses explicit qualifiers(mlir::) instead of wrapping the definition with the namespace.
PiperOrigin-RevId: 286222654
The definition of the function template LLVM::ModuleTranslation::lookupValues
has been located in a source file. As long as it has been the only file that
actually called into the function, this did not cause any problem. However, it
creates linking issues if the function is used from other translation units.
PiperOrigin-RevId: 286203078