__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
Type::isUnsignedIntegerOrEnumerationType(), which are like
Type::isSignedIntegerType() and Type::isUnsignedIntegerType() but also
consider the underlying type of a C++0x scoped enumeration type.
Audited all callers to the existing functions, switching those that
need to also handle scoped enumeration types (e.g., those that deal
with constant values) over to the new functions. Fixes PR9923 /
<rdar://problem/9447851>.
llvm-svn: 131735
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
represents a dynamic cast where we know that the result is always null.
For example:
struct A {
virtual ~A();
};
struct B final : A { };
struct C { };
bool f(B* b) {
return dynamic_cast<C*>(b);
}
llvm-svn: 129256
to be reworked to model CallEnter/CallExit (just like all other calls). For now, treat constructors mostly
like other function calls, making the analysis of C++ code just a little more useful.
llvm-svn: 129166
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
llvm-svn: 128858
from how we process ordinary function calls, had a tremendous about of redundancy, and relied
strictly on inlining behavior (which was incomplete) to provide semantics instead of falling
back to the conservative analysis we use for C functions. This is a significant step into
making C++ analyzer support more useful.
llvm-svn: 128557
conventional categories into Basic and AST. Update the self-init checker
to use this logic; CFRefCountChecker is complicated enough that I didn't
want to touch it.
llvm-svn: 126817