DLLs are usually resolved at process startup, but you can
delay-load them by passing /delayload option to the linker.
If a /delayload is specified, the linker has to create data
which is similar to regular import table.
One notable difference is that the pointers in a delay-load
import table are originally pointing to thunks that resolves
themselves. Each thunk loads a DLL, resolve its name, and then
overwrites the pointer with the result so that subsequent
function calls directly call a desired function. The linker
has to emit thunks.
llvm-svn: 240250
.pdata section contains a list of triplets of function start address,
function end address and its unwind information. Linkers have to
sort section contents by function start address and set the section
address to the file header (so that runtime is able to find it and
do binary search.)
This change seems to resolve all but one remaining test failures in
check{,-clang,-lld} when building the entire stuff with clang-cl and
lld-link.
llvm-svn: 240231
This is a case that one mistake caused a very mysterious bug.
I made a mistake to calculate addresses of common symbols, so
each common symbol pointed not to the beginning of its location
but to the end of its location. (Ouch!)
Common symbols are aligned on 16 byte boundaries. If a common
symbol is small enough to fit between the end of its real
location and whatever comes next, this bug didn't cause any harm.
However, if a common symbol is larger than that, its memory
naturally overlapped with other symbols. That means some
uninitialized variables accidentally shared memory. Because
totally unrelated memory writes mutated other varaibles, it was
hard to debug.
It's surprising that LLD was able to link itself and all LLD
tests except gunit tests passed with this nasty bug.
With this fix, the new COFF linker is able to pass all tests
for LLVM, Clang and LLD if I use MSVC cl.exe as a compiler.
Only three tests are failing when used with clang-cl.
llvm-svn: 240216
In this linker model, adding an undefined symbol may trigger chain
reactions. It may trigger a Lazy symbol to read a new file.
A new file may contain a directive section, which may contain various
command line options.
Previously, we didn't handle chain reactions well. We visited /include'd
symbols only once, so newly-added /include symbols were ignored.
This patch fixes that bug.
Now, the symbol table is versioned; every time the symbol table is
updated, the version number is incremented. We repeat adding undefined
symbols until the version number does not change. It is guaranteed to
converge -- the number of undefined symbol in the system is finite,
and adding the same undefined symbol more than once is basically no-op.
llvm-svn: 240177
Alternatename option is in the form of /alternatename:<from>=<to>.
It's effect is to resolve <from> as <to> if <from> is still undefined
at end of name resolution.
If <from> is not undefined but completely a new symbol, alternatename
shouldn't do anything. Previously, it introduced a new undefined
symbol for <from>, which resulted in undefined symbol error.
llvm-svn: 240161
We don't want to insert a new symbol to the symbol table while reading
a .drectve section because it's going to be too complicated.
That we are reading a directive section means that we are currently
reading some object file. Adding a new undefined symbol to the symbol
table can trigger a library file to read a new file, so it would make
the call stack too deep.
In this patch, I add new symbol names to a list to resolve them later.
llvm-svn: 240076
Alternatename option is in the form of /alternatename:<from>=<to>.
It is an error if there are two options having the same <from> but
different <to>. It is *not* an error if both are the same.
llvm-svn: 240075
We skip unknown options in the command line with a warning message
being printed out, but we shouldn't do that for .drectve section.
The section is not visible to the user. We should handle unknown
options as an error.
llvm-svn: 240067
The linker has to create an XML file for each executable.
This patch supports that feature.
You can optionally embed an XML file to an executable as .rsrc
section. If you choose to do that (by passing /manifest:embed
option), the linker has to create a textual resource file
containing an XML file, compile that using rc.exe to a binary
resource file, conver that resource file to a COFF file using
cvtres.exe, and then link that COFF file. This patch implements
that feature too.
llvm-svn: 239978
On Windows, we have to create a .lib file for each .dll.
When linking against DLLs, the linker doesn't use the DLL files,
but instead read a list of dllexported symbols from corresponding
lib files.
A library file containing descriptors of a DLL is called an
import library file.
lib.exe has a feature to create an import library file from a
module-definition file. In this patch, we create a module-definition
file and pass that to lib.exe.
We eventually want to create an import library file by ourselves
to eliminate dependency to lib.exe. For now, we just use the MSVC
tool.
llvm-svn: 239937
Module-definition files (.def files) are yet another way to
specify parameters to the linker. You can write a list of dllexported
symbols in module-definition files instead of using /export command
line option. It also supports a few more directives.
The parser code is taken from lib/Driver/WinLinkModuleDef.cpp
with the following modifications.
- variable names are updated to comply with the LLVM coding style.
- Instead of returning parsing results as "directive" objects,
it updates Config object directly.
llvm-svn: 239929
DLL files are in the same format as executables but they have export tables.
The format of the export table is described in PE/COFF spec section 5.3.
A new class, EdataContents, takes care of creating chunks for export tables.
What we need to do is to parse command line flags for dllexports, and then
instantiate the class to create chunks. For the writer, export table chunks
are opaque data -- it just add chunks to .edata section.
llvm-svn: 239869
PE/COFF executables/DLLs usually contain data which is called
base relocations. Base relocations are a list of addresses that
need to be fixed by the loader if load-time relocation is needed.
Base relocations are in .reloc section.
We emit one base relocation entry for each IMAGE_REL_AMD64_ADDR64
relocation.
In order to save disk space, base relocations are grouped by page.
Each group is called a block. A block starts with a 32-bit page
address followed by 16-bit offsets in the page. That is more
efficient representation of addresses than just an array of 32-bit
addresses.
llvm-svn: 239710
Resource files are data files containing i18n messages, icon images, etc.
MSVC has a tool to convert a resource file to a regular COFF file so that
you can just link that file to embed resources to an executable.
However, you can directly pass resource files to the linker. If you do that,
the linker invokes the tool automatically. This patch implements that feature.
llvm-svn: 239704
In the case where either a bitcode file and a regular file or two bitcode
files export a common or comdat symbol with the same name, the linker needs
to pick one of them following COFF semantics. This patch implements a design
for resolving such symbols that pushes most of the work onto either LLD's
regular mechanism for resolving common or comdat symbols or the IR linker's
mechanism for doing the same.
We modify SymbolBody::compare to always prefer non-bitcode symbols, so that
during the initial phase of symbol resolution, the symbol table always contains
a regular symbol in any case where we need to choose between a regular and
a bitcode symbol. In SymbolTable::addCombinedLTOObject, we force export
any bitcode symbols that were initially pre-empted by a regular symbol,
and later use SymbolBody::compare to choose between the regular symbol in
the symbol table and the regular symbol from the combined LTO object file.
This design seems to be sound, so long as the resolution mechanism is defined
to be commutative and associative modulo arbitrary choices between symbols
(which seems to be the case for COFF).
Differential Revision: http://reviews.llvm.org/D10329
llvm-svn: 239563
The code generator may create references to runtime library symbols such as
__chkstk which were not visible via LTOModule. Handle these cases by loading
the object file from the library, but abort if we end up having loaded any
bitcode objects.
Because loading the object file may have introduced new undefined references,
call reportRemainingUndefines again to detect and report them.
Differential Revision: http://reviews.llvm.org/D10332
llvm-svn: 239386
The LLVM code generator can sometimes synthesize symbols, such as SSE
constants, that are not visible via the LTOModule interface. Allow such
symbols so long as they have definitions.
Differential Revision: http://reviews.llvm.org/D10331
llvm-svn: 239385
We forgot to check for auxiliary symbol's type. So we sometimes read
garbage as associative section definitions.
Associative sections are considered as not live themselves by the
garbage collector because they are live only when associaited sections
are live.
By reading more data (or garbage) as associative section definitions,
we treated more sections as non-GC-roots, that caused the linker to
discard too many sections by mistake. That caused another mysterious
bug (such as some global constructors don't run at all for some reason.)
llvm-svn: 239287
Not only entry point symbol but also symbols specified by /include
option must be preserved, as they will never be dead-stripped.
http://reviews.llvm.org/D10220
llvm-svn: 239005
Symbols exported by DLLs can be imported not by name but by
small number or ordinal. Usually, symbols have both ordinals
and names, and in that case ordinals are called "hints" and
used by the loader as hints.
However, symbols can have only ordinals. They are called
import-by-ordinal symbols. You need to manage ordinals by hand
so that they will never change if you choose to use the feature.
But it's supposed to make dynamic linking faster because
it needs no string comparison. Not sure if that claim still
stands in year 2015, though. Anyways, the feature exists,
and this patch implements that.
llvm-svn: 238780
Previously, this feature was implemented using a special type of
undefined symbol, in addition to an intricate way to make the resolver
read a virtual file containing that renaming symbols.
Now the feature is directly handled by the symbol table.
The symbol table has a function, rename(), to rename symbols, whose
definition is 4 lines long. Symbol renaming is naturally modeled using
Symbol and SymbolBody.
llvm-svn: 238696
It does not involve notions of virtual archives or virtual files,
nor store a list of undefined symbols somewhere else to consume them later.
We did that before. In this patch, undefined symbols are just added to
the symbol table, which now can be done in very few lines of code.
llvm-svn: 238681
`main` is not the only main function in Windows. You can choose one
from these four -- {w,}{WinMain,main}. There are four different entry
point functions for them, {w,}{WinMain,main}CRTStartup, respectively.
The linker needs to choose the right one depending on which `main`
function is defined.
llvm-svn: 238667
Section names were truncated to 8 bytes because the section table's
name field is 8 byte long. This patch creates the string table to
store long names.
llvm-svn: 238661
The new mechanism is less code, and fixes the case where all inputs
are archives.
Differential Revision: http://reviews.llvm.org/D10136
llvm-svn: 238618
Currently we set the field to zero, but as per the spec, we should
set numbers we read from import library files. The loader uses the
values as starting offsets for binary search when looking up imported
symbols from DLL.
llvm-svn: 238562
This is an initial patch for a section-based COFF linker.
The patch has 2300 lines of code including comments and blank lines.
Before diving into details, you want to start from reading README
because it should give you an overview of the design.
All important things are written in the README file, so I write
summary here.
- The linker is already able to self-link on Windows.
- It's significantly faster than the existing implementation.
The existing one takes 5 seconds to link LLD on my machine,
while the new one only takes 1.2 seconds, even though the new
one is not multi-threaded yet. (And a proof-of-concept multi-
threaded version was able to link it in 0.5 seconds.)
- It uses much less memory (250MB vs. 2GB virtual memory space
to self-host).
- IMHO the new code is much simpler and easier to read than
the existing PE/COFF port.
http://reviews.llvm.org/D10036
llvm-svn: 238458